期刊文献+

支持向量机与证据理论在信息融合中的结合 被引量:23

Combination of Support Vector Machine and Evidence Theory in Information Fusion
下载PDF
导出
摘要 在多传感器信息融合中,DS证据理论是一种重要方法,但是它的基石基本概率分配(BPA)一般不易确定,从而使它的优势难以得到发挥。支持向量机(SVM)是建立在统计学习理论之上的一种新型学习算法,但SVM的硬判决输出却不便于进行多传感器信息融合。为便于信息融合,本文提出了一种具有BPA输出的二类SVM,通过分析Platt概率输出模型的实质与不足提出利用SVM精度下限对其进行加权处理来得到证据理论的BPA方法,实现了SVM与DS证据理论在信息融合中的结合。仿真结果表明通过本文方法可以实现多传感器的信息融合并大大降低了融合识别的误差率。 DS evidence theory is an important method in the field of multi-sensor information fusion, but its advantage is not fully utilized because its BPA is difficult to obtain. SVM is a new learning algorithm based on the statistical learning theory. However, its hard decision output does not adequately facilitate multisensor information fusion. In this paper, in order to apply SVM to information fusion, a two-class SVM with BPA output is proposed. By analyzing the essence and deficiency of the Platt's model, the BPA is obtained through use of the lower bound of the SVM precision to weight the Platt's probability model, which achieves the combination of SVM and the evidence theory in the information fusion. The simulation results show that multi-sensor information fusion can be realized and the error rate can be greatly lowered through the algorithm proposed in this paper.
作者 周皓 李少洪
出处 《传感技术学报》 CAS CSCD 北大核心 2008年第9期1566-1570,共5页 Chinese Journal of Sensors and Actuators
关键词 信息融合 支持向量机 证据理论 基本概率分配 information fusion, support vector machine, evidence theory, basic probability assignment
  • 相关文献

参考文献11

  • 1Nello Cristianini,John Shawe-Taylor,李国正,王猛,曾华军译.支持向量机导轮[M].电子工业出版社,2004. 被引量:2
  • 2边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 3Vladimir N. Vapnik, An Overview of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks, September, 1999,10(5) :988-999. 被引量:1
  • 4Xu Lijia, Chen Yangzhou, Cui Pingyuan. Improvement of D-S Evidential Theory in Multisensor Data Fusion System[C]. Proceeding of the 5th World Congress on Intelligent Control and Automation” June 15-19,2004, Hangzhou, P. R. China: 3124-3128. 被引量:1
  • 5韩崇昭..多源信息融合[M].北京:清华大学出版社,2006:488.
  • 6何友,王国宏,陆大金,彭应宁.多传感器信息融合及应用[M].电子工业出版社,2001年4月. 被引量:2
  • 7Qu Dongcai, Meng Xiangwei, Huang Juan, He You. Research of Artificial Neural Network Intelligent Recognition Technology Assisted by Dempster-Shafer Evidence Combination Theory[C]. 7th International Conference on Signal Processing, 2004 Volume 1, 31 Aug. -4 Sept. 2004 Page(s) : 46-49. 被引量:1
  • 8王毛路..基于HRR像和广义二维像的目标识别技术研究[D].北京航空航天大学,2001:
  • 9Platt John C. Probabilistic Output for Support Vector Machine and Comparisons to Regularized Likelihood Methods[M]. In Advances in Large Margin Classifier, Alexander J. Smola, Peter Bartlett, Bernhard Sch? lkopf, Dale Schuurmans, eds. , MIT Press, 1999: 1-11. 被引量:1
  • 10Tipping Michael E. Sparse Bayesian Learning and the Relevance Vector Machine[J]. Journal of Machine Learning Research 1, 2001: 211-244. 被引量:1

共引文献2

同被引文献199

引证文献23

二级引证文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部