期刊文献+

表面肌电信号脉搏伪迹的消除方法研究 被引量:2

Removal of Pulse Artifacts from Surface EMG Signals
下载PDF
导出
摘要 许多生物电信号的获取过程中都夹杂了脉搏伪迹,表面肌电信号(SEMG)也是一样。本文通过相邻部位同时采集两路SEMG,一路为待处理信号,另一路作为参考信号。采用小波变换提取参考SEMG中的脉搏波,与待处理的SEMG构建独立分量分析的输入,最后用FastICA算法分离出待处理SEMG中的脉搏波,得到去除脉搏伪迹的SEMG。实验结果表明,该方法用于SEMG中的脉搏伪迹的消除是非常有效的。 Many bioelectric signals are often mixed with pulse artifacts while being acquired, the same as Surface Electromyography (SEMG). In this paper, one pair of SEMG signals are recorded from an adjacent part, one for objective signal, another for referenced signal. By using wavelet transform, the pulsewave is extracted first from the referenced SEMG signal, which forms the input of independent component analysis (ICA) together with objective SEMG signal. Finally, the pulse-wave is removed from objective SEMG signal by FastICA algorithm, and the SEMG signal without pulse artifacts is obtained. The experimental results indicate that this method is an effective way to remove pulse artifacts from SEMG signals.
出处 《传感技术学报》 CAS CSCD 北大核心 2008年第9期1498-1502,共5页 Chinese Journal of Sensors and Actuators
基金 863项目资助(2008AA04Z212) 浙江省科技计划项目资助(2007C23088)
关键词 表面肌电信号 脉搏波 独立分量分析 小波变换 FASTICA SEMG pulse-wave ICA wavelet transform FastICA
  • 相关文献

参考文献7

  • 1高剑,罗志增.支持向量机在肌电信号模式识别中的应用[J].传感技术学报,2007,20(2):366-369. 被引量:11
  • 2Joseph N. F. Mak, Yong Hu, KDK Luk. ICA based ECG Removal from Surface Electromyography and Its Effect on Low Back Pain Assessment[J]. The 3rd International IEEE EMBS Conference on Neural Engineering. Hawaii; May 2-5, 2007. 被引量:1
  • 3王家庆..脉搏信号处理方法研究与脉搏测量系统设计[D].北京工业大学,2006:
  • 4Weidong Zhou, Jean Gotman. Removal of EMG and ECG Artifacts from EEG Based on Wavelet Transform and ICA[C]// Annual International Conference of the IEEE EMBS. San Franeisco: September 1-5, 2004. 被引量:1
  • 5Hyvarinen A. A Family of Fixed-Point Algorithms for Independent Component Analysis[C]// Proc. Int. Conf. of Acoustics. Speech and Signal Processing, 1997, 5: 3917-3920. 被引量:1
  • 6Anil K. Jain, Robert P W Duin, Jianchang Mao. Statistical Pattern Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intellgenee. 2000:435-437. 被引量:1
  • 7李仲宁,罗志增.基于小波变换的空域相关法在肌电信号中的应用[J].电子学报,2007,35(7):1414-1418. 被引量:31

二级参考文献16

  • 1汪丹,张亚非.SVM和BP算法在气体识别中的对比研究[J].传感技术学报,2005,18(1):201-204. 被引量:9
  • 2刘东,葛运建.基于SVM预测器的传感器故障诊断与信号恢复研究[J].传感技术学报,2005,18(2):247-249. 被引量:18
  • 3杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:166
  • 4Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995. 被引量:1
  • 5Weston J,Watkins C.Multi-Class Support Vector Machines[R].Royal Holloway College.Tech Rep:CSD TR-98-04,1998. 被引量:1
  • 6Platt J,Cristianini N,Shawe-Taylor J.Large Margin DAGs for Multi-Class Classification[M].In:Advances in Neural Information Processing Systems 12.Massachusetts:MIT Press,2000. 被引量:1
  • 7C Deluca.Physiology and mathematics of myoelectric signals[J].IEEE Transactions on Biomed Eng,1979,26(3):313-325. 被引量:1
  • 8Frigo C,Ferrarin M,Frasson W,et al.EMG signals detection and processing for on-line control of functional electrical stimulation[J].Electromyogr & Kinesiol,2000,10(5):351-360. 被引量:1
  • 9Mallat S,Hwang W L.Singularity detection and processing with wavelets[J].IEEE Transactiona on Inform Theory,1992,38(2):617-643. 被引量:1
  • 10Xu yan-sun,et al.Wavelet transform domain filters:a spatially selective noise filtration technique[J].IEEE Transactions on Image Processing,1994,3(6):747-758. 被引量:1

共引文献40

同被引文献18

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部