摘要
锂离子电池负极固体电解质界面膜(solid electrolyte interface,SEI)是决定负极/电解液相容性的关键,因此对电池的性能起着非常关键的作用。研究者多借助于电化学及谱学方法来研究SEI的组成、结构和性质,但这些方法难于阐明SEI的形成机理。综述了量子化学计算方法在锂离子电池SEI膜形成机理研究中的应用,并对其在设计新型成膜功能分子的应用前景进行了展望。
The solid electrolyte interface (SEI) on the electrodes is a key to compatibility between anode or cathode of lithium ion batteries and electrolyte.Thus the SEI is one of the most important factors that controlled the performances of lithium ion battery.The composition,structure and properties of SEI were investigated conventionally by different spectroscopies.But it is difficult to understand the mechanism for the SEI formation with this investigation. Quantum chemistry is a useful tool for the mechanism understanding. The recent publications on the application of quantum chemistry in the mechanism understanding of SEI formation on anode of lithium ion batteries from solvents and additives in electrolyte were reviewed, and its application in the design of new additives was also prospected.
出处
《电源技术》
CAS
CSCD
北大核心
2008年第10期706-708,共3页
Chinese Journal of Power Sources
基金
广州市科技攻关计划(2006Z3-D2031)
广东省攻关项目(2006A10704003)
关键词
锂离子电池
负极
固体电解质界面
机理
量子化学
lithium ion battery
anode
solid electrolyte interface
mechanism
quantum chemistry