期刊文献+

基于遗传算法的最优多脉冲交会轨道设计 被引量:9

Design of optimal multiple-impulsive rendezvous trajectory using genetic algorithms
下载PDF
导出
摘要 为了解决燃料最省和时间-燃料组合最优的航天器轨道交会问题,采用遗传算法对最优多脉冲交会轨迹进行设计.把最优脉冲的幅值、方向和真近点角作为编码变量,根据最优交会问题的终端边界条件和必要条件来设计适应度函数.该方法分别用于最优双脉冲交会、具有初始滑行段的最优双脉冲交会、最优三脉冲交会和时间-燃料组合最优三脉冲交会四个仿真实例.将仿真结果与牛顿法求解的精确最优解比较,可以看出用遗传算法求解的最优解具有较高精度,证明了该方法的合理性和有效性. The optimal multiple-impulsive rendezvous trajectories were designed using genetic algorithms to solve the rendezvous problem of minimum fuel and time-fuel combinatorial optimization. The magnitudes, directions and burn times of the optimal impulses were coded into genetic algorithms, and the fitness functions were designed to evaluate the final states and necessary conditions. The method was used for four test cases, including the two-impulse rendezvous, the optimal two-impulse rendezvous with initial coastings, the optimal three-impulse rendezvous and time-fuel combinatorial optimal three-impulse rendezvous. Compared with the precision optimal solutions solved by Newton iterative algorithm, the GA solutions are more precise, thus the method in the paper is proved to be correct and effective.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2008年第9期1345-1348,共4页 Journal of Harbin Institute of Technology
关键词 轨迹优化 多脉冲交会 遗传算法 主矢量理论 trajectory optimization multiple-impulse rendezvous genetic algorithms primer-vector theory.
  • 相关文献

参考文献7

  • 1荆武兴,耿云海,杨旭,吴瑶华.空间交会寻的最优轨道机动[J].中国空间科学技术,1998,18(2):22-27. 被引量:23
  • 2王石,祝开建,戴金海,任萱.用进化算法求解轨道转移的时间-能量优化问题[J].宇航学报,2002,23(1):73-75. 被引量:16
  • 3JOHN E P. Optimal Multiple-Impulsive Time-Fixed Rendezvous Between Circular Orbits [ J ]. Journal of Guidance, Control and Dynamics, 1986, 9 (1) : 17 -22. 被引量:1
  • 4YOUNG H K, DAVID B S. Optimal Spacecraft Rendezvous Using Genetic Algorithms [ J ]. Journal of Spacecraft and Rockets, 2002, 39 (6) : 859 -865. 被引量:1
  • 5CHRISTOPHER R H, JEFFSRY A J, MICHAEL G K. A Genetic Algorithm for Function Optimization: A Matlab Implementation, NCSU-IE-TR-95-09[ R]. Raleigh: North Carolina State University, 1995. 被引量:1
  • 6HERRERA F, LOZANO M, VERDEGAY J L. Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis [ J ]. Artificial Intelligence Review, 1998, 12 (4): 265-319. 被引量:1
  • 7KARR C L, FREEMAN L M. Industrial Applications of Genetic Algorithms [ M ]. Boca Raton: CRC Press, 1998. 被引量:1

二级参考文献5

共引文献37

同被引文献70

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部