期刊文献+

基于三维表面模型的任意切割算法 被引量:10

Arbitrary cutting algorithm for 3D surface model
下载PDF
导出
摘要 通过对三维表面模型进行切割,人们可以方便地观察物体的内部结构。针对三维表面模型,提出了一种任意切割算法。任意切割过程首先是交互生成切割曲线,生成切割面;然后通过切割面对表面模型进行切割,在切割面上生成交线序列;再由交线序列与切割面边界生成封闭的边界轮廓,确定各边界轮廓间的包含关系;最后对边界轮廓包围的截面区域进行Delaunay三角剖分并着色,得到完整的剖面。实验结果证明了该算法的有效性和可行性。 With cutting operation for 3D surface model, people can observe the internal structure of objects easily. This paper presented a new algorithm of arbitrary cutting operations of 3D surface model. The procedure of arbitrary cutting operation was to create cutting curve interactively at first, then created cut plane; the 3D model was cut by cutting planes, lists of edge in a cutting plane were established. With these lists and cutting plane' s borderlines, the boundary contours could be created, and their embracing relationship could be identified. The region enclosed by the contours was triangulated using Delaunay triangulation algorithm and filling color to these triangles at last. Complete profiles could be obtained. Experiments prove that the result of the algorithm is effective and available.
出处 《计算机应用研究》 CSCD 北大核心 2008年第9期2850-2852,共3页 Application Research of Computers
基金 国家"863"计划资助项目(2006AA06Z114)
关键词 三维表面模型 切割 轮廓 3D surface model cutting contours
  • 相关文献

参考文献9

二级参考文献54

  • 1丁永祥,夏巨谌,王英,肖景容.任意多边形的Delaunay三角剖分[J].计算机学报,1994,17(4):270-275. 被引量:83
  • 2任建波,颉耀文,屈宏斌.基于平面多边形的不规则三角网分割[J].甘肃科学学报,2005,17(1):65-68. 被引量:4
  • 3[1] Preparata, F.P., Shamos, S. Computational Geometry an Introduction. Berlin: Springer-Verlag, 1985. 被引量:1
  • 4[2] Kalay, Y.E. Determining the spatial containment of a point in general polyhedra. Computer Graphics and Image Processing, 1982,19(4):303~334. 被引量:1
  • 5[3] Horn, W., Taylor, D.L. A theorem to determine the spatial containment of a point in a planar polyhedron. Computer Vision, Graphics and Image Processing, 1989,45(1):106~116. 被引量:1
  • 6[4] Feito, F.R., Torres, J.C. Inclusion test for general polyhedra. Computers & Graphics, 1997,21(1):23~30. 被引量:1
  • 7[5] James, D.F., Andries, V.D., Steven, K.F., et al. Computer Graphics: Principles and Practice, 2nd ed. CA: Addison-Wesley Publishing Company, 1995. 被引量:1
  • 8向世明.OpenGL编程与实例[M].北京:电子工业出版社,2000.. 被引量:2
  • 9WILLIAM JS,KENNETH MM,LISA SA,et al.The VTK user's guide[M].New York:Kitware,2001. 被引量:1
  • 10Azevedo E F D, Simpson R B. On optimal interpolation triangle incidences[J]. SIAM Journal on Scientific and Statistical Computing, 1989, 10(6): 1063~1075. 被引量:1

共引文献139

同被引文献96

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部