摘要
对于常系数齐线性微分方程组ddXt=AX,当A的特征根λi的重数ni 1时,特征根λi所对应解X(t)=(P1(t),…,Pn(t))Teλit中,t的多项式p(ji)(t)的次数ni+秩(A-λiE)-n,改进了多项式p(ji)(t)的次数ni-1的估计式.
To the linear homogeneous differential equation with constant coefficients dX/dt = AX, when the number of repetition ni of the eigenvalue λi of A is bigger or equal of 1, the number of times of polynomial pj(t) (j = 1 ,…,n) is less or equal of ni + rank (A -- λiE) -- n in the corresponding solution X(t) = (Pi(t),…,Pn(t))^Te^λi^1 of λi. So the conlusion which the number of times of pj(t) is less or equal of ni -- 1 is improved.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第20期223-227,共5页
Mathematics in Practice and Theory
基金
潍坊学院自然科学基金项目(2008Z11)
关键词
常系数齐线性微分方程组
初等因子
基本解组
system of linear homegeneous differential equation with constant coefficient
elementary divisor
system of fundamenttal solutions