期刊文献+

Hilbert空间中算子广义逆的积分表示 被引量:2

Integral Representation of the Generalized Inverse of Hilbert Sapce Operators
原文传递
导出
摘要 利用算子矩阵分块的技巧,得到了Hilbert空间中算子的Moore-Penrose逆和Drazin逆的积分表示.给出了较为简洁的证明,同时将有限维的结论推广到无限维的情形. By using the technique of operator matrix blocks, the integral representations of Moore-Penrose inverse and Drazin inverse of Hilbert space operators are obtained, which gives a new proof and the results on finite dimensional are extended into infi.nite dimensional situations.
作者 钟金 刘晓冀
出处 《数学的实践与认识》 CSCD 北大核心 2008年第20期185-188,共4页 Mathematics in Practice and Theory
基金 广西科学基金(0640016) 广西民族大学重大科研项目联合资助
关键词 算子 Moore—Penrose逆 DRAZIN逆 积分表示 operators Moore-Penrose inverse drazin inverse integral representation
  • 相关文献

参考文献7

  • 1Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applieations[M]. Wiley-Interscienee, New York,1974. 被引量:1
  • 2Groetsch C W. Generalized Inverses of Linear Operators[M]. Marcel Dekker, Inc New York and Basel,1997. 被引量:1
  • 3Rothblum U G. A representation of the Drazin inverse and characterization of the index[J]. SIAM J Math, 1976, 31 : 646-648. 被引量:1
  • 4Castro Gonzalez N, Koliha J J, Wei Y. Integral representation of the Drazin inverse A^D[J]. Electronical J Linear Algebra, 2002,9 : 129-131. 被引量:1
  • 5Wei Y. A characterization and representation of the Drazin inverse[J]. SIAM J Matrix Anal Appl, 1996,17:774- 747. 被引量:1
  • 6Dragan S Djordjevic. Unified approach to the reverse order rule for generalized inverses[J]. Acta Sci Math,2001, 76:761-776. 被引量:1
  • 7Dragan S Djordjevic. Characterizations of normal, hypernormal and EP operators[J]. J Math Anal Appl, 2007, 329(2) :1181-1190. 被引量:1

同被引文献16

  • 1郑兵,钟承奎.Hilbert空间上线性算子广义逆A_(T,S)^((2))的存在性及其表示式[J].数学物理学报(A辑),2007,27(2):288-295. 被引量:8
  • 2Y. Wei, D. S. Djordjevie. On integal representation of the generalized inverse AT.5^(2) Appl. Math. Comput. ,2003,14(2) : 189-194. 被引量:1
  • 3D. S. Djordjevic, P. S. Stamimirovic. Splitting for operators and generalized inverses[J]. Publicationes Mathematicae, Debrecen,2001(59) : 147-159. 被引量:1
  • 4D. S. Djordjevic, P. S. Stamimirovic. On the generalized drazin inverse and generalized resolvent [J]. Czechoslovak Mathematical Journal, 2001,51 (126) : 617-634. 被引量:1
  • 5B. Zheng, R. B. Bapat. Generalized inverses AT.S^(2) and a rank equation, App. Math. Comput. 2004(155):407-415. 被引量:1
  • 6Y. Wei, A characterization and representation of the generalized inverse AT.S^(2) AT.s and its application[J]. Linear Algebra Appl. , 1998(280): 87-96. 被引量:1
  • 7Y. Wei, H. Wu, The representation and approximation for the generalized inverse AT.S^(2), Appl. Math [J]. Comput. 2003(135) :263-276. 被引量:1
  • 8CASTRO N, KOLIHA J J, WEI Y M. Integral representation of Drazin inverse A[J].Electronical Journal of Linear Alge- bra, 2002, 9:129-131. 被引量:1
  • 9WEI Y M. Integral representation of W-Drazin inverse[J]. Appl Math Comput, 2003, 144:3-10. 被引量:1
  • 10WEI Y M, WU H. The representation and approximation for the weghted Moore-Penrose inverse [ J ]. Appl Math Comput, 2001, 12:17-28. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部