期刊文献+

基于改进K-均值算法在彩色图像分割中的应用 被引量:11

Color image segmentation method based on improved K-means clustering algorithm
下载PDF
导出
摘要 如何对彩色图像中的目标进行有效的分割是计算机视觉和图像分析的重点和难点,文中提出不断对彩色图像采用最优阈值化进行一次粗分割提取最大目标区域,再利用改进的K-均值算法对提取目标子区域进行精确分割。实验结果表明该方法对彩色图像能够有效地提取目标物体,并对噪声图像具有一定的鲁棒性。 How to effectively segment objects in the color images is the key point in the computer vision and image analysis. This paper presents repeated using the optimal threshold for a roughly extract the largest target area of the color image.Then improved K_means clustering algorithm is used to improve the accuracy of the segmentation from the target area.Experimental results show that this method can effectively extract color image of the object.It is also a certain degree of robustness to the noise image.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第29期191-192,203,共3页 Computer Engineering and Applications
基金 博士科研启动项目(No.06QDZ23) 交叉项目(No.06IND12)
关键词 图像分割 最优阈值化 K-均值算法 鲁棒性 image segmentatiun oplimal threshold K_mean clustering algorithm robustness
  • 相关文献

参考文献13

  • 1Deshmukh K S,Shinde G N.An adaptive color image segmentation[J]. Electronic Letters on Computer Vision and Image Analysis 2005 ,5 (4):12-23. 被引量:1
  • 2Navon E,Miller O,Averabuch A.Color image segmentation based on adaptive local thresholds[J].Image and Vision Computing,2005,23: 69-85. 被引量:1
  • 3Sonka M,Hlav V,Boyl R.图像处理、分析与机器视觉[M].2版.艾海舟,武勃,译.北京:人民邮电出版社,2003:84-140. 被引量:2
  • 4章毓晋.图像处理和分析[M].北京:科学出版社,2003:180-215. 被引量:3
  • 5Karatzas D,Antonacopoulos A.Colour text segmentation in web images based on human perception[J].Image and Vision Computing, 2006,25 ( 1 ) : 564-577. 被引量:1
  • 6Angulo J,Serra J.Modelling and segmentation of colour images in polar representations[J].Image and Vision Computing,2006,25 ( 1 ) : 475-495. 被引量:1
  • 7林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 8陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:68
  • 9Kato Z.Segmentation of color images via reversible jump MCMC sampling[J].Image and Vision Computing,2006. 被引量:1
  • 10Shih F Y,Cheng Shouxian.Automatic seeded region growing for color image segmentation[J].Image and Vision Computing,2005,23 ( 1 ) : 877-886. 被引量:1

二级参考文献30

  • 1刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法[J].西安电子科技大学学报,1993,20(1):40-46. 被引量:5
  • 2王小鹏,罗进文.基于形态学梯度重建的分水岭分割[J].光电子.激光,2005,16(1):98-101. 被引量:35
  • 3刘重庆,程华.分割彩色图像的一种有效聚类方法[J].模式识别与人工智能,1995,8(A01):133-138. 被引量:7
  • 4Lee C, Hun S, Ketter T A, et al. Unsupervised connectivitybased thresholding segmentation of midsagittal brain MR images[J]. Computers in Biology and Medicine, 1998, 28(3): 309~338. 被引量:1
  • 5McInerney T, Terzopoulos D. Deformable models in medical image analysis: A survey [J]. Medical Image Analysis, 1996, 1(2): 91~108. 被引量:1
  • 6Orphanoudakis S C, Tziritas G, Haris K. A hybrid algorithm for the segmentation of 2D/3D images [A]. In: Proceedings of International Conference on Information Processing in Medical Imaging, Brest, 1995. 385~386. 被引量:1
  • 7Pohle R, Toennies K D. Segmentation of medical images using adaptive region growing [A]. In: Proceedings of SPIE,Boston, Massachusetts, 2001, 4322: 1337~1346. 被引量:1
  • 8Pohle R, Tonnies K D. A new approach for model-based adaptive region growing in medical image analysis [A]. In:Proceedings of the 9th International Conference on Computer Analysis and Patterns, Warsaw, 2001. 238~246. 被引量:1
  • 9Zheng L, Jin J, Hugues T. Unseeded region growing for 3D image segmentation [J]. Journal of Research and Practice in Information Technology, 2001, 2:31~37. 被引量:1
  • 10Law T Y, Heng P A. Automated extraction of bronchus from3D CT images of lung based on genetic algorithm and 3D region growing [A]. In: Proceedings of SPIE, San Jose, California,2000, 3979:906~916. 被引量:1

共引文献406

同被引文献124

引证文献11

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部