期刊文献+

利用粒子群优化算法的平面度误差评定 被引量:10

Particle Swarm Optimization-Based Flatness Evaluation
下载PDF
导出
摘要 将粒子群优化算法(PSO)应用于平面度误差的优化计算中.应用实例表明,PSO能够很好地解决具有非线性优化目标函数或具有多参数的优化问题;PSO的计算精度优于最小二乘法的计算精度,与其他满足标准定义的最小区域条件的方法计算精度相当,能够获得精度较高的结果且简单易于实现.实例计算和理论分析证明算法是收敛的,其中理论分析条件:(1)惯性权重ω<1;(2)随机参数组合c>0;(3)2ω-c+2>0. A novel method for flatness evalution based on particle swarm optimization (PSO) was proposed. The case study of computation shows that the PSO is very suitable for dealing with the optimization problems with nonlinear optimization goal function or with multi-parameters. The advantages are as following.. Its computation results are superior to those given by the least squared methods and as good as those given by other declared optimization methods; also it is efficient, easy to be understood and performed, and convergent verified by the computation and the theoretical analysis under the conditions of (1) inertia ω〈1, (2) random parameters combination c〉0, and (3) 2ω-c+2〉0.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2008年第4期507-509,共3页 Journal of Huaqiao University(Natural Science)
基金 福建省自然科学基金资助项目(T0850004) 福建省科技计划重点项目(2008I0020)
关键词 粒子群优化算法 平面度 惯性权重 编码策略 评定 收敛性 particle swarm optimization flatness inertia weight encoding strategy evaluation convergence
  • 相关文献

参考文献7

  • 1KENNEDY J, EBERHART R. Particle swarm optimization[C] ff Proceedings of the IEEE International Conference on Neural Networks. NJ: Institute of Electrical and Electronics Engineers, 1995(4) :1942-1948. 被引量:1
  • 2崔长彩,李兵,张认成.粒子群优化算法[J].华侨大学学报(自然科学版),2006,27(4):343-347. 被引量:15
  • 3SHI Y, EBERHART R. A modified particle swarm optimizer[C]//Proceedings of the IEEE Conference on Evolu tionary Computation. NJ: Institute of Electrical and Electronics Engineers, 1998 : 69-73. 被引量:1
  • 4WEBER T, MOTAVALLI S, FALLAHI B, et al. A unified approach to form error evaluation[J]. Precision Engineering, 2002,26(3) : 269-278. 被引量:1
  • 5CUI Chang-cai, LI Bing, HUANG Fu-gui, et al. Genetic algorithm based form error evaluation[J]. Measurement Science and Technology, 2007,18(7): 1818-1824. 被引量:1
  • 6TRELEA I C. The particle swarm optimization algorithm: Convergence analysis and parameter selection[J]. Information Processing Letters, 2003,85(6): 317-325. 被引量:1
  • 7JIANG M, LOU Y P, YANG S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm[J]. Information Processing Letters, 2007,102(1): 8-16. 被引量:1

二级参考文献37

共引文献14

同被引文献62

引证文献10

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部