期刊文献+

两种单光纤光镊捕获效果的数值仿真与实验研究 被引量:8

Numerical Simulation and Experiments of Two Fiber Optical Tweezers
原文传递
导出
摘要 采用一种基于时域有限差分(FDTD)的数值算法,仿真计算了抛物线形和大锥角形两种新型单光纤光镊的出射光场,并在稳态场下通过对麦克斯韦应力张量积分求得介质球在两种光场中受到的光阱力,得到大锥角型光纤端产生的光阱力较大的结论;讨论了不同介质球大小、折射率,光纤探针形状对光阱力的影响。在实验中这两种光纤探针都实现了对水中酵母菌细胞的捕获,且采用流体力学法对抛物线形和大锥角形二种新型单光纤光镊产生的光阱力进行了标定。结果表明:基于FDTD数值仿真方法计算受力与实验结果一致,并且这种计算光纤光镊产生的光阱力的方法简单,适用;且抛物线形和大锥角形光纤探头都具备构成单光纤光镊的条件。 The finite difference time domain (FDTD) method was used to calculate the output optical fields of parabolic and large angle single-fiber optical tweezers. The transverse and axial trapping forces were then obtained by integrating the Maxwell stress tensor in stable state. Compared with the parabolic fiber optical probe, the optical force of the large angle fiber probe is lager. Meanwhile, the influences of sizes and diffractive indexes of microscopic particles and profile of fiber probe on the optical force were considered. In experiment, these two fiber probes both successfully trap yeast cells in water and the two types of force are calibrated by hydromechanics. The results indicate that the optical force obtained by numerical simulation based on FDTD is in good agreement with that from experiments. This method is simple and suitable for the optical force calculation of fiber optical tweezers, and the parabolic and large angle optical fiber tips meet the demand of forming single-fiber optical tweezers.
出处 《光学学报》 EI CAS CSCD 北大核心 2008年第10期1971-1976,共6页 Acta Optica Sinica
关键词 医用光学与生物技术 单光纤光镊 时域有限差分 光学捕获 流体力学法 medical optics and biotechnology single-fiber optical tweezers finite difference time domain (FDTD) optical trapping hydrodynamics method
  • 相关文献

参考文献31

  • 1Ashkin A, Dziedzic J M, Bjorkholm J E. Observation of a single-beam gradient force optical trap for dielectrical particles[J]. Opt. Lett., 1986, 11(5): 288-290 被引量:1
  • 2Ashkin A, Schutze K, Dziedzic J M. Force generation of organelle transport measured in vivo by an infrared laser trap[J]. Nature, 1990, 348(6299): 346-348 被引量:1
  • 3Furst E M, Gast A P. Micromechanics of dipolar chains using optical tweezers[J]. Phys. Rev. Lett., 1999, 82(20): 4130-4133 被引量:1
  • 4Kitamura N, Sekiguchi N, Haeng-Boo K. Optical transformation and fission of single giant vesicles in water by radiation pressure[J]. J. Am. Chem. Soc., 1998, 120(8): 1942-1943 被引量:1
  • 5Gauthier R C. Optical trapping a tool to assist optical machining[J]. Opt. and Laser Technol., 1997, 29(7): 389-399 被引量:1
  • 6张文静,李银妹,楼立人,徐升华,孟炳寰.应用光镊技术测量液相微区温度[J].中国激光,2006,33(5):663-666. 被引量:5
  • 7雷铭,姚保利.多棱锥镜产生多光束干涉场的理论和实验研究[J].光学学报,2006,26(5):757-762. 被引量:14
  • 8Constable A, Kim J, Mervis J et al.. Demonstration of a fiber-optical light-force trap[J]. Opt. Lett., 1993, 18: 1867-1869 被引量:1
  • 9Lyons E R, Sonek G J. Confinement and bistability in a tapered hemispherically lensed optical fiber trap[J]. Appl. Phys. Lett., 1995, 66(13): 1584-1586 被引量:1
  • 10Taguchi K, Atsuta K, Nakata T et al.. Levitation of a microscopic object using plural optical fibers[J]. Opt. Commun., 2000, 176(1): 43-47 被引量:1

二级参考文献46

共引文献33

同被引文献112

引证文献8

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部