期刊文献+

基于语义匹配的交互式视频检索框架 被引量:2

A New Interactive Video Retrieval Framework Using Semantic Matching
下载PDF
导出
摘要 近年来基于内容的视频检索技术受到人们越来越多的关注.本文提出了一套基于语义匹配的交互式视频检索框架,其贡献主要为以下三方面:1)定义新型的视频高层特征—语义直方图用以描述视频的高层语义信息;2)使用主导集聚类算法建立基于非监督学习的检索机制,用以降低在线计算复杂度和提高检索效率;3)提出新型的相关反馈机制—基于语义的分支反馈,该机制采用分支反馈结构和分支更新策略实现检索性能的提升.实验结果表明了本框架的有效性. Content-based video retrieval (CBVR) has attracted increasing interest in recent years. In this paper, we propose a new interactive video retrieval framework using semantic matching. The main contributions are three-fold: 1) We define a novel high-level feature named semantic-matching histogram (SMH) to reflect videos' semantic information. 2) We set up an unsupervised learning-based retrieval mechanism using the dominant set clustering for the sake of low online complexity and high retrieval efficiency. 3) We establish a new interactive mechanism called semantic-based relevance feedback (SBRF) working together with SMHs to improve retrieval performances. Experimental results on a database of sports videos show the effectiveness and efficiency of the proposed framework.
出处 《自动化学报》 EI CSCD 北大核心 2008年第10期1243-1249,共7页 Acta Automatica Sinica
基金 国家自然科学基金(60520120099 60672040 60705003) 国家高技术研究发展计划(863计划)(2006AA01Z453)资助~~
关键词 语义匹配直方图 基于非监督学习的检索机制 基于语义的分支反馈 Semantic-matching histogram (SMH), unsupervised learning-based retrieval, semantic-based relevancefeedback (SBRF)
  • 相关文献

参考文献15

  • 1Zhang S H, Zhang Y F, Chen T, Hall P M, Ralph Martin. Video structure analysis. Tsinghua Science and Technology, 2007, 12(6): 714-718 被引量:1
  • 2Shi L, King I, Lyu M R. Video summarization by video structure analysis and graph optimization. In: Proceedings of IEEE International Conference on Multimedia and Exposition. Taipei, Taiwan: IEEE, 2004. 1959-1962 被引量:1
  • 3Chang H S, Sull S, Lee S U. Efficient video indexing scheme for content based retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(8): 1269-1279 被引量:1
  • 4Dimitrova N, Abdel M M. Content-based video retrieval by example video clip. In: Proceedings of International Society for Optical Engineering. New York, USA: SPIE, 1997.59-70 被引量:1
  • 5吴翌,庄越挺,潘云鹤.视频相似度的衡量[J].计算机辅助设计与图形学学报,2001,13(3):284-288. 被引量:9
  • 6Muneesawang P, Guan L. iARM: an interactive video retrieval system. In: Proceedings of IEEE International Conference on Multimedia and Exposition. Taipei, Taiwan: IEEE, 2004. 285-288 被引量:1
  • 7Eidenberger H, Breiteneder C. Semantic feature layers in content-based image retrieval: implementation of human world features. In: Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision. Washington D. C., USA: IEEE, 2002. 174-179 被引量:1
  • 8Kim D H, Chung C W. Qcluster: relevance feedback using adaptive clustering for content-based image retrieval. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. San Diego, USA: ACM, 2003. 599-610 被引量:1
  • 9Rui Y, Huang T S. Optimizing learning in image retrieval. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hitton Head Island, USA: IEEE, 2000. 236-243 被引量:1
  • 10He X F, King O, Ma W Y, Li M J, Zhang H J. Learning a semantic space from user's relevance feedback for image retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1): 39-48 被引量:1

二级参考文献3

共引文献8

同被引文献48

  • 1朱曦,林行刚.视频镜头时域分割方法的研究[J].计算机学报,2004,27(8):1027-1035. 被引量:20
  • 2卢炎生,饶祺.一种LSH索引的自动参数调整方法[J].华中科技大学学报(自然科学版),2006,34(11):38-40. 被引量:6
  • 3lndyk P, Motwani R. Approximate nearest neighbors: towards removing the curse of dimensionality[ C]//The Symposium on Theory of Computing. 1998:604-613. 被引量:1
  • 4Gionis A, Indyk P, Motwani R. Similarity search in high dimensions via hashing[ C ]//The 25th International Conference on Very Large Data Bases. 1999:518-529. 被引量:1
  • 5Datar M, Immorlica N, Indyk P, et al. Locality sensitive hashing scheme based on p-stable distributions[ C ]//The ACM Sym- posium on Computational Geometry. 2004: 253-262. 被引量:1
  • 6Andoni A, Indyk P. E21sh: Exact Euclidean locality-sensitive hashing (E^2LSH 0.1 User Manual) [ EB/OL]. [2005-06-01 ]. http-//www, mit. edu/- andoni/LSH/manual, pdf, October 20,2011. 被引量:1
  • 7Andoni A, Indyk P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[ J]. Communications of the ACM, 2008,51(1) :117-122. 被引量:1
  • 8Panigrahy R. Entropy-based nearest neighbor algorithm high dimensions[ C]//The ACM-SIAM Symposium on Discrete Algo-rithms. 2006:1185-1195. 被引量:1
  • 9Buhler J, Tompa M. Finding motifs using random projections[ J]. Journal of Computational Biology, 2002 , 9(2) :225-242. 被引量:1
  • 10Shakhnarovich G, Viola P, Darrell T. Fast pose estimation with parameter-sensitive hashing[ C] //The 9th IEEE InternationalConference on Computer Vision. 2003 : 13-16. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部