摘要
近年来基于内容的视频检索技术受到人们越来越多的关注.本文提出了一套基于语义匹配的交互式视频检索框架,其贡献主要为以下三方面:1)定义新型的视频高层特征—语义直方图用以描述视频的高层语义信息;2)使用主导集聚类算法建立基于非监督学习的检索机制,用以降低在线计算复杂度和提高检索效率;3)提出新型的相关反馈机制—基于语义的分支反馈,该机制采用分支反馈结构和分支更新策略实现检索性能的提升.实验结果表明了本框架的有效性.
Content-based video retrieval (CBVR) has attracted increasing interest in recent years. In this paper, we propose a new interactive video retrieval framework using semantic matching. The main contributions are three-fold: 1) We define a novel high-level feature named semantic-matching histogram (SMH) to reflect videos' semantic information. 2) We set up an unsupervised learning-based retrieval mechanism using the dominant set clustering for the sake of low online complexity and high retrieval efficiency. 3) We establish a new interactive mechanism called semantic-based relevance feedback (SBRF) working together with SMHs to improve retrieval performances. Experimental results on a database of sports videos show the effectiveness and efficiency of the proposed framework.
出处
《自动化学报》
EI
CSCD
北大核心
2008年第10期1243-1249,共7页
Acta Automatica Sinica
基金
国家自然科学基金(60520120099
60672040
60705003)
国家高技术研究发展计划(863计划)(2006AA01Z453)资助~~
关键词
语义匹配直方图
基于非监督学习的检索机制
基于语义的分支反馈
Semantic-matching histogram (SMH), unsupervised learning-based retrieval, semantic-based relevancefeedback (SBRF)