摘要
拓扑分子格是一种重要的格上拓扑的形式,已有一些文章中研究了拓扑分子格的分离性(ST分离性)、紧性(s紧性)及紧化(s紧化)等性质,一族拓扑分子格的乘积拓扑是一种重要的格上拓扑,研究它的性质有重要的理论意义与应用价值。文章给出了一族对称拓扑分子格的直和概念,给出了对称拓扑分子格的直和的特征,证明了对称拓扑分子格的分离性Ti(i=-1,0,1,2)及可数性CI,CII是可和性质。
Topological Molecular Lattices is a important form of topology on lattices. Separation( ST separation), compactness (s-compactness) and compactification (s-compactification) etc of topological molecular lattices have been research in some papers. Product topology of a family of topological molecular lattices is a important topology on lattices. It exist important theory meaning and apply values that researching it' s properties. In this paper concepts of direct sum of symmetric topological molecular lattices are given. Characterizations of direct sum of symmetric topological molecular lattices are given. It is proved that separation Ti ( i =- 1,0,1,2 ) and countability CI, CII on symmetric 'topological molecular lattices are summable properties.
出处
《东华理工大学学报(自然科学版)》
CAS
2008年第3期298-300,共3页
Journal of East China University of Technology(Natural Science)
基金
东华理工学院院长基金资助项目(DHYK0614)
关键词
对称拓扑分子格
对称拓扑分子格的直和
分离性
可数性
symmetric topological molecular lattices
direct sum of symmetric topological molecular lattices
separation
countability