摘要
为了能准确和高效的跟踪动态裂纹扩展,我们发展了三维有限变形的内聚元和一系列不可逆内聚力关系.该内聚元通过采用不可逆内聚力关系来控制裂纹两侧物质的逐渐分离和形成自由表面,这一点可类比于传统有限元对块体材料的离散化.为了展示该方法的预测能力及便于灵活使用的特点,我们模拟了Zehnder和Rosakis所做的重物落下动态断裂实验,值得注意的是该方法可以近似模拟出裂尖的轨迹.
We develop a three-dimensional finite-deformation cohesive element and a class of irreversible cohesive laws which enable the accurate and efficient tracking of dynamically growing cracks. The cohesive element governs the separation of the crack flanks in accordance with an irreversible cohesive law, eventually leading to the formation of free surfaces, and is compatible with a conventional finite element discretization of the bulk material. The versatility and predictive ability of the method is demonstrated through the simulation of a drop-weight dynamic fracture test similar to those reported by Zehnder and Rosakis. The ability of the method to approximate the experimentally observed crack-tip trajectory is particularly noteworthy.
出处
《力学进展》
EI
CSCD
北大核心
2008年第5期630-640,共11页
Advances in Mechanics
基金
海军研究总署(ONR)基金N00014-95-1-0453资助.
关键词
内聚力关系
有限变形
三维
裂纹扩展
有限元
动态断裂
cohesive law, finite deformations, three dimensional, crack propagation, finite element, dynamic fracture