期刊文献+

利用隐空间支持向量机设计IDS的检测算法

A DETECTION ALGORITHM WITH IDS DESIGNED BY HIDDEN SPACE SUPPORT VECTOR MACHINES
下载PDF
导出
摘要 为解决网络入侵检测系统中检测算法分类精度不高训练样本数需要较多以及训练学习时间较长等问题,在基于支持向量机的基础上,提出一种新的利用隐空间支持向量机设计IDS的检测算法。仿真实验结果表明本算法较基于支持向量机的检测算法具有更良好的泛化性能,更快的迭代速度,更高的检测精度和更低的误报率。 Detection algorithm in network intrusion detection system has problems of low classification precision, high number of training data set and long training and learning time, etc. To resolve them, based on Support Vector Machines (SVMs) a new detection algorithm using Hidden Space Support Vector Machines (HSSVMs) to design IDS was proposed. The emulation experimental results using KDD CUP 1999 data set show that the new algorithm has better generalization ability, quicker iterative speed, higher detection accuracy, and lower error rate than the one based on SVMs.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第10期87-89,共3页 Computer Applications and Software
基金 江苏省教育厅资助项目(2005-290) 江苏省教科院资助项目(2005-R-196)
关键词 网络安全 入侵检测 隐空间支持向量机 算法设计 Network security Intrusion detection Hidden space support vector machines (HSSVMs) Algorithm design
  • 相关文献

参考文献14

二级参考文献29

  • 1成睿奇,田盛丰,黄厚宽.基于分布式智能代理的入侵检测方法研究[J].计算机工程与设计,2004,25(3):374-378. 被引量:2
  • 2张琨,曹宏鑫,严悍,刘凤玉.支持向量机在网络异常入侵检测中的应用[J].计算机应用研究,2006,23(5):98-100. 被引量:9
  • 3张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:23
  • 4Aronszajn N.. Theory of reproducing kernels. Transactions of the American Mathematical Society, 1950, 68(6): 337~404. 被引量:1
  • 5Burges C.J.C.. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 1~47. 被引量:1
  • 6Smola A.J., Schlkopf B.. A tutorial on support vector regression. Royal Holloway College, University of London, UK, NeuroCOLT Technical Report: NC-TR-98-030, 1998. 被引量:1
  • 7Müller K.R., Smola A.J., Rtsch G. et al.. Predicting time series with support vector machines. In: Schlkopf B., Burges C.J.C., Smola A.J. eds.. Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press, 1999, 243~254. 被引量:1
  • 8Zhang Li, Zhou Wei-Da, Jiao Li-Cheng. Hidden space support vector machines. IEEE Transactions on Neural Networks, 2004, 15(6): 1424~1434. 被引量:1
  • 9Suykens J.A.K., Vandewalle J.. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293~300. 被引量:1
  • 10Hornik K., Stinchcombe M., White H.. Multi-layer feed-forward networks are universal approximators. Neural Networks, 1989, 2(5): 359~366. 被引量:1

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部