期刊文献+

大规模定制下基于交互式遗传算法的谈判模型研究 被引量:1

To Study on Negotiation Model under the Mass Customization Based on Interactive Genetic Algorithm
下载PDF
导出
摘要 越来越多的企业已经认识到大规模定制是一种竞争策略,可以给企业带来竞争优势。随着大规模定制程度的提高,企业间对信息交互的及时性、有效性的要求也越来越高,企业迫切需要一种快速高效的谈判解决方案来适应大规模定制的需要。运用交互式遗传算法理论来建立谈判模型,以适应大规模定制的需要。 Mass customization, which can bring companies with competitive advantage, has been identified as a competitive strategy by an increasing number of companies. Mass customization has been realized the increasing demands in the timeliness and effectiveness of information interaction, and the urgent needs of the efficient negotiation solution for companies. This paper tries to get a good solution with a negotiation model based on interactive genetic algorithm.
出处 《价值工程》 2008年第10期100-103,共4页 Value Engineering
关键词 大规模定制 交互式遗传算法 谈判模型 mass customization interactive genetic algorithm negotiation Model
  • 相关文献

参考文献11

  • 1Pine J B. Mass Customization : the New Frontier in Business Competition. Boston : Harvard Business School Press; 1993. 被引量:1
  • 2KRAUS S. Negotiation and cooperation in multi -agent environments[J]. Artificial Intelligence. 1997: 79-97. 被引量:1
  • 3NEUMANN J V, MORGENSTERN O, The Theory of Games and Economic Behavior[M]. Princeton University Press 1994. 被引量:1
  • 4Ehtamo H, Kettunen E. Searching for joint gains in multi-party negotiations [J]. European Journal of Operational Research. 2001, 130 (1) : 54-69. 被引量:1
  • 5Turowski K. Agent-based e-commerce in case of mass customization [J]. International Journal of Production Economics. 2002, 75(1-2): 69-81. 被引量:1
  • 6YE Y, LIU J, MOUKAS A. Agents in electronic commerce[J]. Electronic Commerce Research and Applications. 2001 : 9-14. 被引量:1
  • 7Zeng D, Syeara K. Bayesian learning in negotiation [J]. International Journal of Human-Computer Studies. 1998, 48 (1):125-141. 被引量:1
  • 8Oliver RJ. On Artificial Agents for Negotiation in Electronic Commerce Proceedings of the 29th Annual Hawaii International Conference on System Sciences; 1996. 被引量:1
  • 9周芳,柳学坤.一种适用于网上谈判支持系统的改进遗传算法[J].计算机工程,2005,31(23):169-171. 被引量:2
  • 10杨子晨,孟波,熊德林,肖延松.基于多目标遗传算法求解多边谈判问题的Pareto解[J].计算机工程与应用,2002,38(1):39-41. 被引量:6

二级参考文献21

  • 1周春光,周国芹,梁艳春.遗传算法中的重组操作[J].吉林大学自然科学学报,1996(1):21-24. 被引量:6
  • 2席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:344
  • 3徐南荣 仲伟俊.科学决策理论与方法[M].南京:东南大学出版社,1996.. 被引量:31
  • 4周明 孙树栋.遗传算法原理及应用[M].西安:西安交通大学出版社,2000.. 被引量:42
  • 5丁伟.面向电子商务的谈判支持系统研究[M].哈尔滨:哈尔滨工业大学,2001.. 被引量:1
  • 6James K,SEBENIUS.Negotiation Analysis:A Characterization And Review[J].Management Science, 1992; 38 (1) 被引量:1
  • 7Harri Ehtamo,Raimo P Hamalainen. Generating Pareto Solutions in a Two-party Setting:Constraint Proposal Methods[J].Management Science,1999;45(12) 被引量:1
  • 8Harri Ehtamo,Eero Kettunen,Raimo P Hamalainen. Searching for joint gains in multi-party negotiations[J].European Journal of Operational Research, 2001; (130): 54~69 被引量:1
  • 9H Ehtarno,M Verkama,R P hamalainen. On distributed computation of Pareto solutions for two decision makers[J].IEEE Trans Systems,Man,and Cybernetics Part A:Systems and Humans,1996;26(4):498~503 被引量:1
  • 10Barry Blecherman.Adopting automated negotiation[M].Technology In Society 21,1999:167-174 被引量:1

共引文献21

同被引文献18

  • 1周勇,巩敦卫,张勇.混合性能指标优化问题的进化优化方法及应用[J].控制与决策,2007,22(3):352-356. 被引量:8
  • 2黄永青,梁昌勇,郝国生,杨善林.隐性目标决策问题的IDSS结构模型研究[J].合肥工业大学学报(自然科学版),2007,30(2):217-221. 被引量:6
  • 3许芳诚.智能型多准则决策支持研究:以交谈式遗传算法为基础的模型[D].桃园,台湾:国立中央大学,2000. 被引量:3
  • 4Takagi H. Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation[C]. Proceedings of the IEEE International Conference on Intelligent Engineering System, San Diego, 2001, Vol 89: 1275-1296. 被引量:1
  • 5Dawkins R. The blind watchmaker[M]. Essex: Longman, 1986: 1-50. 被引量:1
  • 6Fukada Y, Sato K, Mitsukura Y. The room design system of individual preference with IGA[C]. International Conference on Control, Automation and Systctas, 2007: 2158-2161. 被引量:1
  • 7Nakajima T, Hashimoto S, Haruyama, et al. Office layout support system using interactive genetic algorithm [C]. IEEE Congress on Evolutionary Computation, 2006:56-63. 被引量:1
  • 8Brintrup A M, Ramsden J, Takagi H, et al. Ergonomic chair design by fusing qualitative and quantitative Criteria using interactive genetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(3): 343-354. 被引量:1
  • 9Brintrup A M, Ramsden J, Tiwari A. Integrated qualitativeness in design by multi-objective optimization and interactive evolutionary computation[C]. The 2005 IEEE Congress on Evolutionary Computation, 2005: 2154-2160. 被引量:1
  • 10Miki M, Yamamoto Y, Wake S, et al. Global asyn chronous distributed interactive genetic algorithm [ C]. IEEE International Conference on Systems, Man and Cy bemetics, 2006: 3481-3485. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部