期刊文献+

一种新的选择性支持向量机集成学习算法 被引量:22

Novel Selective Support Vector Machine Ensemble Learning Algorithm
下载PDF
导出
摘要 针对支持向量机(SVM)在应用于集成学习中会失效的问题,提出一种选择性SVM集成学习算法(SE-SVM),利用ξα误差估计法估计个体SVM泛化性度量,并基于负相关学习理论引入差异性度量,通过递归删除法选择出一组泛化性能优良、相互间差异性大的SVM参与集成学习.基于UCI数据的仿真实验表明,SE-SVM能够平均提高SVM的分类正确率0.4%,比常规的Bag-ging集成学习方法和负相关集成学习方法的分类正确率分别提高了0.24%和0.16%. Focusing on the problem that conventional ensemble learning methods may be invalid when support vector machine (SVM) is used as component learner, a new selective SVM ensemble algorithm is proposed. & estimator is used to estimate the generalization performance of the component SVM, and negative learning theory is used to introduce diversity among component SVMs. A set of component SVMs with high generalization performance and high diversity is selected during ensemble through recursive elimination algorithm. Experimental results on UCI data sets show that compared with single SVM, conventional Bagging ensemble method and negative learning ensemble method, the classification accuracy of selective SVM ensemble is increased on average by 0. 4%, 0. 24% and 0. 16 %, respectively.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第10期1221-1225,共5页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2006AA09A102-11) 国家自然科学基金重点资助项目(40730424)
关键词 泛化性度量 集成学习 负相关 支持向量机 generalization measurement ensemble learning negative correlation support vector machine
  • 相关文献

参考文献8

  • 1KIM H C, PANG S, JE H M, et al. Constructing support vector machine ensemble [J]. Pattern Recognition, 2003, 36(12) :2757-2767. 被引量:1
  • 2VALENTINI G. An experimental bias-variance analysis of SVM ensembles based on resampling techniques [J]. IEEE Transaction on Systems, Man and Cybernetics, 2005, 35(6):1252-1271. 被引量:1
  • 3TANG E K,SUGANTHAN P N, YAO X. An analysis of diversity measures [J]. Machine Learning, 2006, 65(1): 247-271. 被引量:1
  • 4KROGH A, VEDELSBY J. Neural network ensembles, cross-Validation, and active learning [ C] // TOURETZKY D, LEEN T. Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1995: 231-238. 被引量:1
  • 5JOACHIMS T. Estimating the generalization performance of a SVM efficiently [C] // Proceedings of ICML 2000. San Francisco, CA, USA: Morgan Kaufniann Publishers Inc. , 2000:431-438. 被引量:1
  • 6BLAKE C L, MERZ C J. UCI repository of machine learning databases [DB/OL]. (1998-01-01) [2007-10- 01]. http://www. ics. uci. edu/mlearn/MLRepository. html. 被引量:1
  • 7ZANDA M, BROWN G, FUMERA G, et al. Ensemble learning in linearly combined classifiers via negative correlation [C] // Proceedings of MCS2007. Berlin, Germany: Springer-Verlag, 2007: 440-449. 被引量:1
  • 8ZHOU Zhihua, WU Jianxin, TANG Wei. Ensembling neural networks: many Could be better than all [J]. Artificial Intelligence, 2002, 137(1/2) :239-263. 被引量:1

同被引文献265

引证文献22

二级引证文献289

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部