期刊文献+

分类支持向量机在小电流接地选线中的应用 被引量:1

Support Vector Machine for Classification and its Application to the Ground Fault line Detection in Peterson-Coil-Grounding System
下载PDF
导出
摘要 小电流接地系统发生单相接地故障时,各种电气量表现出不同于正常工况时的特征,可根据各种电气量的特征对系统运行状况进行模式识别,文中利用分类支持向量机对小电流接地系统运行状况进行模式识别,以确定接地故障线路或母线。测试结果表明,该方法有效、准确,具有一定的实用价值。 In Peterson-coil-grounding system (PCGS), the electric parameters in grounding fault have different electric characteristics, and the working situation of PCGS can be recognized by electric parameters of system. In this paper, support vector machines for classification (SVMC)are used to recognize the working situation of PCGS and to detect the fault line or bus. Simulation results are also given.
作者 郭彦东 李荣
出处 《自动化技术与应用》 2008年第9期77-79,共3页 Techniques of Automation and Applications
关键词 电力系统 接地选线 分类支持向量机 模式识别 power system ground fault line detection support vector machines for classification pattern recognition
  • 相关文献

参考文献7

二级参考文献35

  • 1朱大萌,孙宏军.BP网络在小电流接地选线中的应用[J].电测与仪表,2004,41(6):5-7. 被引量:8
  • 2孙增忻 等.智能控制理论与技术[M].北京:清化大学出版社,1997.. 被引量:8
  • 3[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152. 被引量:1
  • 4[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297. 被引量:1
  • 5[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161. 被引量:1
  • 6[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287. 被引量:1
  • 7[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995. 被引量:1
  • 8[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998. 被引量:1
  • 9[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999. 被引量:1
  • 10[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208. 被引量:1

共引文献2366

同被引文献22

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部