摘要
探讨二次需求函数以及线性成本函数得到的模糊利润函数的最优情况:通过对商品的收益函数运用模糊数的理论讨论其最优模糊利润,考察在对称及不对称模糊数条件下解的情况.最终得到,在对称模糊数条件下,模糊利润模型与经典数学利润模型最优结果一致;而在不对称模糊数条件下,模糊利润模型在环境调整因子细微的差异下能推导出更多结果.可见,以模糊数学的方法来建立经济模型,进而研究商品价格和利润之间的关系,较经典数学方法研究更能反映需求量、价格各种动态因素所带来的利润问题.在影响因素不断变化的经济市场,应用模糊数学利润模型使企业尽可能做到利润最大化.
The optimal fuzzy profit with quadratic demand function and linear cost function is discussed. Using theories and tools in fuzzy mathematics, solutions for optimal fuzzy profit are got in symmetrical and asymmetrical fuzzy number situations. In symmetrical fuzzy number situation, the result is similar to classical profit result. While in asymmetrical fuzzy number situation, more results can be derived than in classical market. Using fuzzy mathematical method to form an economical model, and using the model to study the relation between the price and profit, more about the effect of demand and price to the profit can be got. In practice, fuzzy model can give more advices to the producer.
出处
《东华大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第4期501-505,共5页
Journal of Donghua University(Natural Science)
关键词
需求函数
线性成本函数
收益函数
梯形模糊数
最优利润
demand function
linear cost function
profit function
trapezoidal fuzzy number
optimal profit