期刊文献+

Deglycosylation altered the gating properties of rNav1.3:glycosylation/deglycosylation homeostasis probably complicates the functional regulation of voltage-gated sodium channel

去糖基化改变rNav1.3门控性质:糖基化/去糖基化的动态平衡可能使电压门控钠通道的调控功能更具复杂性(英文)
下载PDF
导出
摘要 Objective To examine the effect of deglycosylation on gating properties of rNav1.3. Methods rNav1.3 was expressed in Xenopus oocyte, with glycosylation inhibition by using tunicamycin. Two-electrode voltage clamp was employed to record the whole-cell sodium current and data were analyzed by Origin software. Those of glycosylated rNav1.3 were kept as control. Results Compared with glycosylated ones, the steady-state activation curve of deglycosylated rNav1.3 was positively shifted by about 10 mV, while inactivation curve was negatively shifted by about 8 mV. Conclusion Glycosylation altered the gating properties of rNav 1.3 and contributed to the functional diversity. 目的观察糖基化对rNav1.3电压门控性质的影响。方法将rNav1.3在爪蟾卵母细胞中表达,衣霉素抑制其糖基化,双电极电压钳记录全细胞电流,Origin软件分析处理数据。对照组为未去糖基化的rNav1.3。结果与糖基化的rNav1.3相比,去糖基化的rNav1.3稳态激活曲线向去极化方向偏移约10mV,稳态失活曲线向超极化方向偏移约8mV。结论糖基化修饰改变rNav1.3的电压门控性质,异化其生理功能。
出处 《Neuroscience Bulletin》 SCIE CAS CSCD 2008年第5期283-287,共5页 神经科学通报(英文版)
基金 the National Basic Research Development Program of China (No. 2006CB500801).
关键词 rNav1.3 voltage-gated sodium channel GLYCOSYLATION two-electrode voltage clamp Xenopus oocyte rNav1.3 电压门控钠通道 糖基化 双电极电压钳 爪蟾卵母细胞
  • 相关文献

参考文献19

  • 1Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 2000, 26: 13-25. 被引量:1
  • 2Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 1984, 312: 121-127. 被引量:1
  • 3Brisson JR, Carver JP. The relation of three-dimensional structure to biosynthesis in the N-linked oligosaccharides. Can J Biochem Cell Biol 1983, 61: 1067-1078. 被引量:1
  • 4McDowell W, Schwarz RT. Dissecting glycoprotein biosynthesis by the use of specific inhibitors. Biochimie 1988, 70: 1535- 1549. 被引量:1
  • 5Schwalbe RA, Wang Z, Wible BA, Brown AM. Potassium channel structure and function as reported by a single glycosylation sequon. J Biol Chem 1995, 270: 15336-15340. 被引量:1
  • 6Freeman LC, Lippold J J, Mitchell KE. Giycosylation influences gating and pH sensitivity of IsK. J Membr Biol 2000, 177: 65-79. 被引量:1
  • 7Khanna R, Myers MP, Laine M, Papazian DM. Glycosylation increases potassium channel stability and surface expression in mammalian cells. J Biol Chem 2001, 276: 34028-34034. 被引量:1
  • 8de Souza NF, Simon SM. Glycosylation affects the rate of traffic of the Shaker potassium channel through the secretory pathway. Biochemistry 2002, 41: 11351-11361. 被引量:1
  • 9Petrecca K, Atanasiu R, Akhavan A, Shrier A. N-linked glycosylation sites determine HERG channel surface membrane expression. J Physiol 1999, 515 (Pt 1): 41-48. 被引量:1
  • 10Gong Q, Anderson CL, January CT, Zhou Z. Role of glycosylation in cell surface expression and stability of HERG potassium channels. Am J physiol Heart Circ Physiol 2002, 283: H77- H84. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部