期刊文献+

精确覆盖问题的O(1.414^n)链数DNA计算机算法 被引量:3

An O(1. 414^n) Volume Molecular Solutions for the Exact Cover Problem on DNA- Based Supercomputing
下载PDF
导出
摘要 DNA计算机的可扩展性问题是近年来生物计算领域的重要研究重点之一.根据精确覆盖问题DNA计算求解过程中的并行计算需求,将Aldeman-Lipton模型的操作与粘贴模型的解空间结合,引入荧光标记和凝胶电泳技术,提出了一种求解精确覆盖问题的DNA计算模型和基于分治方法的DNA计算机算法.算法由初始解空间生成算法Init()、冗余解删除算法IllegalRemove()和并行搜索器ParallelSeacher()共3个子算法组成.与同类算法的性能比较分析表明:本算法在保持多项式生物操作复杂性的条件下,将求解n维精确覆盖问题的DNA链数从O(2n)减少至O(1.414n),从而将DNA计算机在试管内可求解的精确覆盖问题集合的基数从60提高到120,改进了相关文献的研究结果. The scalability problem in DNA computer has been one of the important research areas in DNA computing. According to the requirement of the DNA parallel computing for exact cover problem, a DNA model for good scalability is proposed, which is based on the biological operations in the Adleman-Lipton model and the solution space of stickers in the sticker-based model by simultaneously taking the method of fluorescence labeling and the technique of gel electrophoresis into the model. Based on this model, a DNA-based algorithm for the exact cover problem, by making use of the strategem of divide-and-conquer, is also proposed which consists of three sub-algorithms: Init (), IllegalRemove(), and ParallelSeacher(). Compared with by far the best molecular algorithm for the exact cover problem with n variables and m sets in which O(2^n) DNA strands are used, this algorithm can solve the same problem only using O(1. 414^n) DNA strands on the condition of not varying the time complexity. Therefore, the cardinal number of the exact cover problem that can be theoretically resolved in a test tube may be enlarged from 60 to 120, and thus the is an improved result over the past researches.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第10期1782-1788,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60603053,90715029) 浙江省自然科学基金项目(106654) 高等学校博士后科学基金项目(20060400845)~~
关键词 DNA计算机 NP完全问题 精确覆盖问题 分治法 DNA超级计算 DNA computer NP-complete problem exact cover problem divide super-computing proposed algorithm and conquer DNA
  • 相关文献

参考文献18

二级参考文献110

共引文献72

同被引文献28

  • 1林浩.信息需求网络上最优连接问题[J].系统工程学报,2004,19(4):427-430. 被引量:4
  • 2李汪根,丁永生.DNA计算机中队列数据结构的设计及实现[J].计算机学报,2007,30(6):993-998. 被引量:17
  • 3Radziszowski S P. Small Ramsey numbers [J]. Electronic Journal of Combinatorics Dynamical Survey, 2006, 11 (8) : 1-36. 被引量:1
  • 4Luo Haipeng, Su W Enlong, Shen Yunqiu. New lower bounds of ten elassical Ramsey numbers [J]. Australasian Journal of Combinatories, 2001, 24(1): 81-90. 被引量:1
  • 5Adleman L. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187):1021- 1024. 被引量:1
  • 6Braich R S, et al. Solution of a 20-variable 3-SAT problem onaDNA computer [J]. Science, 2002, 296(5567):499- 502. 被引量:1
  • 7Shin S Y, Lee I H, Kim D M, et al. Multiobjective evolutionary optimization of DNA sequences for reliable DNA computing [J]. IEEE Trans on Evolutionary Computation, 2005, 9(2): 143-158. 被引量:1
  • 8Lipton R J. DNA solution of hard computational problems [J]. Science, 1995, 268(28): 542-545. 被引量:1
  • 9Chang W L, Ho M, Guo M, et al. Molecular solutions for the subset-sum problem on DNA-based supereomputing [J]. Biosystems, 2004, 73(1): 117-130. 被引量:1
  • 10Guo M, Ho MS-H, Chang W L, et al. Fast parallel molecular solutions for DNA-based supercomputing : Factoring integers [J]. IEEE Trans on Nanobioscience, 2005, 4(2): 149-163. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部