摘要
对任意正整数n,设{c_n}表示立方数列,即c_n=n^3.而立方阶数列{z_n}定义为最小的正整数z_n使得c_n^(zn)≡1(mod c_(n+1)).本文的主要目的是利用初等方法研究数列{z_n}的计算问题,并给出了z_n的具体表示形式,从而证明了Kenichiro Kashihara提出的两个猜想:A.数列{z_n}中除了第一项外,其余项都是偶数与B.在数列{z_n}中存在无限多个平方数是正确的.
For any positive integer n, let {cn} be the cubic number sequence cn = n^3. The cubic order sequence is given by {zn : zn is the smallest positive integer solution of cn^zn≡ 1 (rood cn+1)}. The main purpose of this paper is using the elementary method to give an exact expression for zn, then prove that the two conjectures: A. All terms except the first term in sequence {zn} are even and B. There are infinitely many square numbers in {zn} which are proposed by Kenichiro Kashihara are correct.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2008年第3期430-432,共3页
Pure and Applied Mathematics
基金
国家自然科学基金(10671155)
关键词
立方阶数列
同余性质
猜想
the cubic order sequence, congruence, conjecture