期刊文献+

基于反步法的异结构混沌系统Q-S同步 被引量:1

Q-S synchronization of diverse structure chaotic systems based on backstepping method
下载PDF
导出
摘要 基于反步法,提出了扩展Liu混沌系统和Genesio混沌系统的Q-S同步方法。反步法降低了控制器的设计难度,易于求取误差系统的Lyapunov函数。设计了单驱动器和多驱动器两种控制器结构,同步控制器结构均比以往的异结构同步控制器有所简化。仿真结果验证了两种控制器均能实现扩展Liu混沌系统和Genesio系统的Q-S同步,并且多驱动器结构更简单,同步速度快,动态过程误差小。基于反步法的Q-S同步方法可以推广到其他的异结构混沌系统同步控制中。 The Q-S synchronization method based on backstepping is proposed to synchronize extended Liu chaotic systems and Genesio chaotic systems. The difficulty of constructing synchronization controllers is decreased by backstepping methods, so it is easy to solve the Lyapunov functions of error systems. The single driving controller and multi-driving controller are designed, which are simpler than those controllers in previous articles. Simulation results show that both these controllers can achieve the Q-S synchronization of extended Liu chaotic systems and Genesio systems. Moreover the multi-driving controller has simpler structure and can synchronize systems rapidly with smaller error values in dynamic process, the Q-S synchronization method based on backstepping can also be extended to synchronize other diverse structure chaotic systems.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第9期1764-1767,共4页 Systems Engineering and Electronics
基金 江苏省科技厅青年创新基金资助课题(BK2004421)
关键词 扩展Liu混沌系统 Genesio混沌系统 Q-S同步 反步法 extended Liu chaotic system Genesio chaotic system Q-S synchronization backstepping method
  • 相关文献

参考文献10

二级参考文献27

  • 1Tsubone T and Saito T 1998 IEEE Trans, on Circuits and Systems-Ⅰ 45 889. 被引量:1
  • 2Rossler O E 1979 Phys. Lett. A 71 155. 被引量:1
  • 3Li Y X, Wallace K S Tang and Chen G R 2005 Int. J.Circuit Theory and Application 33 235. 被引量:1
  • 4Zhang H, Ma X K, Yang Y and Xu C D 2005 Chin. Phys.14 86. 被引量:1
  • 5Zhang S H and Shen K 2003 Chin. Phys. 13 149. 被引量:1
  • 6Liu C X, Liu T, Liu K and Liu L 2004 Chaos, Solitions and Fractals 22 1031. 被引量:1
  • 7Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285. 被引量:1
  • 8Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B,Levy P and Rhodes W T 2003 Optics Spectvosc. 95 114. 被引量:1
  • 9Shahverdiev E M, Nuriev R A, Hashimov R H and ShoreK A 2004 arXiv:nlin. CD/0404053 vl 29 Apr. 被引量:1
  • 10Hsieh J Y, Hwang C C, Wang A P and Li W J 1999 Int.J. Control 72 882. 被引量:1

共引文献103

同被引文献18

  • 1许弘雷,刘新芝.陈氏混沌系统的脉冲鲁棒同步[J].系统工程与电子技术,2005,27(3):486-489. 被引量:7
  • 2廖晓昕,罗海庚,赵新泉,沈轶,曾志刚.具有循环反馈的Lurie控制系统绝对稳定性及在混沌同步中的应用[J].自然科学进展,2006,16(5):543-554. 被引量:4
  • 3Pecora L M, Carroll T L. Synchronization in chaoiic systems [J]. Physical Review Letters, 1990,64 (8) : 821 - 824. 被引量:1
  • 4Yoo W J, Ji D H, Won S C. Synchronization of two different nonautonomous chaotic systems using fuzzy disiurbance observer [J]. Physics Letters A ,2009,374 (11 - 12) : 1354 - 1361. 被引量:1
  • 5Kebriaei H, Yazdanpanah M J. Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity [J]. Communications in Nonlinear Science and Numerical Simulation, 2010,15(2) :430- 441. 被引量:1
  • 6Kiani B A, Fallahi K, Pariz N, et al. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter [J]. Communications in Nonlinear Science and Numerical Simulation ,2009,14(3) :863 - 879. 被引量:1
  • 7Fallahi K, Leung H. A chaos secure communication scheme based on multiplication modulation [J].Communications in Nonlinear Science and Numerical Simulation, 2010,15 (2) : 368 - 383. 被引量:1
  • 8Hu J, Chen S H, Chen L. Adaptive control for anti synchroniza- tion of Chua’s chaotic system [J]. Physics Letters A, 2005,339 (6) :455 - 460. 被引量:1
  • 9He H L, Tu J J, Algebraic condition of synchronization for multiple time-delayed chaotic Hopfield neural networks [J]. Neural Computing and Applications ,2010,19(4) :543 - 548. 被引量:1
  • 10Yu L, Zhang Q L, Yu S. Delay-dependenl conditions for robust absolute stability of uncertain time-delay systems[C]// Proc. of the 42th IEEE Conference on Decision and Control, 2003:6033 - 6037. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部