期刊文献+

应用平移不变小波变换消除短路电流中的噪声

Applying translation invariant wavelet transform to de-noising of short-circuit current
原文传递
导出
摘要 有效去除继电保护信息采集中的噪声,对确保继电保护装置正确动作至关重要。对电力系统接地短路电流信号的去噪进行了研究,针对小波去噪等信号处理方法中存在的Gibbs现象,提出并研究了采用db4小波进行信号去噪,采用平移不变小波变换,并以新型阈值代替传统阈值,进一步改善了去噪效果。工程实际应用中,采用间隔循环平移可提高运算速度,理论分析及仿真实验均验证了该方法的有效性。 Enlargement of modern power systems makes the fault conditions more complicated and so how to de-noise the signal to enable the relay protection device act correctly becomes very important.The de-noising of short-circuit current in the power system is studied.The db4 wavelet was applied in signal de-noising and the translation invariant wavelet was used to eliminate the Gibbs phenomenon.To improve the de-noising effect,the traditional threshold was replaced by the new one.In engineering applications,the alternation of the cycle spinning is better because of its fast calculation speed.Theoretical analysis and simulations validate the method effective.
出处 《华东电力》 北大核心 2008年第9期21-23,共3页 East China Electric Power
基金 教育部霍英东青年教师基金资助项目(101060) 四川省杰出青年基金项目(07ZQ026-012)
关键词 信号去噪 Gibbs现象 平移不变 阈值法 循环平移法 signal de-noising Gibbs phenomenon translation invariant threshold cycle-spinning method
  • 相关文献

参考文献12

二级参考文献36

  • 1王琼,王秀芳,潘淑琴.消除Gibbs现象的仿真研究[J].自动化技术与应用,2004,23(8):21-24. 被引量:5
  • 2董德存,吴汶麒,张树京.任意型一维FIR数字滤波器设计新方法[J].信号处理,1994,10(1):11-18. 被引量:1
  • 3[2]Hong-Tae Shim. On the Gibbs phenomenon for wavelet expansions [J]. Journal of Approximation Theory,1996,84:74~95. 被引量:1
  • 4[3]S. Mallat. Singulary detection and processing with wavelet [J]. IEEE Tran. on IT, 1992,38: 617 ~ 643. 被引量:1
  • 5M L Ahlstrom.W J Tompkins.Digital filters for real-time ECG signal processing using microprocessors[J].IEEE Transaction on Biomedical engineering,1985,32(9):708—713. 被引量:1
  • 6Patrick S Hamilton,Willis J Tompkins.Quantitative inverstigation of QRS detection rules using the MIT/BIH arrhythmia database[J].IEEE Transaction on Biomedical engineering,1986,33(12):1157—1165. 被引量:1
  • 7David L Donoho, Lain M Johnstone. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994,81,3:425 - 455. 被引量:1
  • 8Stephane G Mallat. A theory for multiresolution signal decomposition:the wavelet representation [ J ]. IEEE Transaction on PAMI., 1989, 11(7) : 674 - 693. 被引量:1
  • 9G P Nason, B W Silverman. The stationary wavelet transform and some statistical applications in wavelet and statistics, Lecture notes in statistics[ M]. Spinger Verlag, 1995. 281 - 299. 被引量:1
  • 10DOHONO DL, JOHNSTONE IM. Ideal spatial adaptation by wavelet shrinkage [ J]. Biometrika, 1994, 81 (3): 425 - 455. 被引量:1

共引文献280

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部