摘要
设G1,G2是群,映射f:G1→G2叫做G1到G2的广义同态映射,如果a,b∈G1,等式(ab)f=afbf和(ab)f=bfaf至少有一个成立.利用广义同态映射,以统一的观点处理互为对称的同态映射与反同态映射,所得相关结果在一定程度上揭示了广义自同构与有限群结构的联系.
Given groups G1 and G2 , a mapping f: G1 → G2 is said to be a generalized homomorphism from G1 to G2 if for any a, b in G1 , either ( ab )^f = a^fb^for ( ab )^f =b^fa^f. By using the concept of generalized homomorphism, we uniformly deal with homomorphisms and anti-homomorphisms in a unified view and obain some related results, which uncover the relation between the generalized automorphisms and the structure of finite groups in a way.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第5期522-525,共4页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(10571181)
广西自然科学基金(0447038
0640070)
广西教育厅科研基金
广西研究生教育创新计划项目(2007106030701M13)资助项目
关键词
有限群
广义同态
同态
反同态
广义自同构群
Finite group
Generalized homomorphism
Homomorphism
Anti-homomorphism
Generalized automorphism group