期刊文献+

一种高效的多变量时间序列相似查询算法 被引量:16

An efficient similarity search for multivariate time series
下载PDF
导出
摘要 为了高效地执行多变量时间序列(MTS)相似查询,提出一种基于距离的索引结构(Dbis)相似查询算法。采用主成分分析方法对MTS数据进行降维处理;聚类MTS主成分序列,选择每类质心作为参考点;依据参考点将每类变换到一维空间,这样可以利用B+-树结构进行索引查询;MTS序列比较相似采用的是扩展的Frobenius范数(Eros)。通过对股票数据集实验验证了Dbis算法的高效性。 In order to efficiently perform similarity search for Multivariate Time Series (MTS) datasets, a distance - based index structure (Dbis) for similarity search was presented. The dimension of MTS database was reduced firstly by Principal Component Analysis (PCA). The principal component of MTS was parted by cluster, and a MTS item was selected as reference point from each partition. The MTS items in each partition were transformed into a single dimensional space based on their similarity with respect to a reference MTS item. This allowed the MTS items to be indexed by using a B + - tree structure. An extended Frobenius norm (Eros) was used to compare the similarity between MTS items. Several experiments on a financial MTS database were performed. The results show the effectiveness of Dbis.
出处 《计算机应用》 CSCD 北大核心 2008年第10期2541-2543,2552,共4页 journal of Computer Applications
基金 河北省科技攻关计划项目(062135140)
关键词 多变量时间序列 聚类 相似查询 Multivariate Time Series (MTS) cluster similarity search
  • 相关文献

参考文献9

  • 1YANG K, SHAHABI C. A PCA-based similarity measure for multivariate time series[ C]// Proceedings of MMDB' 04. New York, NY, USA, ACM, 2004:65-74. 被引量:1
  • 2AGRAWAL R , FALOUSTOS C , SWAMI A . Efficient similarity search in sequence databases[ C]// Proceedings of 4th International Conference on Foundations of Data Organizationand Algorithms, LNCS 730. Berlin: Springer, 1993:69-84. 被引量:1
  • 3KEOGH E, CHU S, HART D, et al. Segmenting time series: A survey and novel approach[ M]. [ S.l. ] : World Scientific Publishing Company, 2003. 被引量:1
  • 4YANG K, SHAHABI C. An efficient k nearest neighbor search for multivariate time series[J]. Information and Computation, 2007, 205(1) : 65 -98. 被引量:1
  • 5YU C, OOI B C, TAN K L, et al. Indexing the distance: An efficient method to KNN processing[ C]// Proceedings of VLDB. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2001:421 -430. 被引量:1
  • 6JOLIFFE I T. Principal component analysis[ M]. Berlin: Springer, 2002. 被引量:1
  • 7MOON T K, STIRLING W C. Mathematical methods and algorithms for signal processing[ M]. Englewood Cliffs, NJ, USA: Prentice Hall, 2000. 被引量:1
  • 8YANG K, SHAHABI C. A multilevel distance-based index structure for multivariate time series[ C]// Proceedings of TIME' 05. Washington, DC: IEEE Computer Society, 2005:65-73. 被引量:1
  • 9新浪财经[EB/OL].[2008-04-01].http://finance.sina.com.cn. 被引量:1

同被引文献124

引证文献16

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部