摘要
本文研究IMTL代数M上的素布尔滤子的运算性质。令■B(M)为M上全体素布尔滤子集,■=■B(M)∪{ф},通过在集合■引进格并、交运算和逆序对合对应,证明了■构成一个拟布尔代数。进一步在■定义一个伴随对,证明■也构成一个剩余格。
This paper focuses on the operatiom about prime boolean fitter of IMTL algebra M.Let FB(M) be the set of all prime boolean fitter of IMTL algebra M and FB(M)= FB(M)∪{φ} ,The V - operation, ∧ - operation, onter- revers- ing involution correspondence anti adjoint pair (×),→) on FB(M) are defined.The conclusions that ,FB(M) defined as above is a quasi- boolean algebra and is also a residuated lattice are obtained.
出处
《数学理论与应用》
2008年第3期61-64,共4页
Mathematical Theory and Applications
关键词
剩余格
IMTL代数
素滤子
布尔滤子
拟布尔代数
Residuated lattice IMTL algebra Prime filter Boolean falter Quasi- boolean algebra