期刊文献+

Preparation and magnetic properties of Cu_(0.4)Zn_(0.6)Cr_(0.5)Sm_(0.06)Fe_(1.44)O_4/ polyaniline nanocomposites

Preparation and magnetic properties of Cu_(0.4)Zn_(0.6)Cr_(0.5)Sm_(0.06)Fe_(1.44)O_4/ polyaniline nanocomposites
下载PDF
导出
摘要 A self-propagating combustion synthesis (SPCS) method, citrate SPCS method, was used to synthesize Cu0.4Zn0.6Cr0.5SmxFe1.5-xO4 (x=-0-0.1) nanosized powders at relatively low temperature. Polyaniline/Cu0.4Zn0.6Cr0.5Sm0.06Fe1.44O4 (CZCS0.06FO) nanocomposites were prepared by in situ polymerization of aniline in the presence of CZCS0.06FO ferrites. The structures, morphologies, and ferromagnetic properties of ferrite powders and nanocomposites were characterized by powder X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and vibrating sample magnetometer (VSM). The results indicated that ferrite powders were coated effectively by polyaniline, which reduced the agglomeration of ferrite particles to certain extent, and was helpful to the decentralization and stabilization of nanoparticles. The nanocomposites with core-shell structure under applied field exhibited hysteresis loops of the ferromagnetic nature. The nanocomposites were fit for being used as soft magnetic material because of their lower coercivity than that of pure ferrites. A self-propagating combustion synthesis (SPCS) method, citrate SPCS method, was used to synthesize Cu0.4Zn0.6Cr0.5SmxFe1.5-xO4 (x=-0-0.1) nanosized powders at relatively low temperature. Polyaniline/Cu0.4Zn0.6Cr0.5Sm0.06Fe1.44O4 (CZCS0.06FO) nanocomposites were prepared by in situ polymerization of aniline in the presence of CZCS0.06FO ferrites. The structures, morphologies, and ferromagnetic properties of ferrite powders and nanocomposites were characterized by powder X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and vibrating sample magnetometer (VSM). The results indicated that ferrite powders were coated effectively by polyaniline, which reduced the agglomeration of ferrite particles to certain extent, and was helpful to the decentralization and stabilization of nanoparticles. The nanocomposites with core-shell structure under applied field exhibited hysteresis loops of the ferromagnetic nature. The nanocomposites were fit for being used as soft magnetic material because of their lower coercivity than that of pure ferrites.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第4期558-562,共5页 稀土学报(英文版)
基金 Science and Technology Key Project of Zhejiang Province (2006C21080) Science and Technology Key Project of Zhejiang Jinghua City (2004-2-157)
关键词 NANOCOMPOSITES FERRITE POLYMERIZATION POLYANILINE rare earths nanocomposites ferrite polymerization polyaniline rare earths
  • 相关文献

二级参考文献1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部