期刊文献+

离散变量结构优化设计的最优综合效能法 被引量:3

OPTIMUM SYNTHETIC EFFECTIVENESS METHOD FOR STRUCTURAL OPTIMIZATION WITH DISCRETE VARIABLES
下载PDF
导出
摘要 针对结构优化问题的位移约束,引入关键约束的界约参数,提出了结构位移统一约束的缩减形式,从而简化了结构优化模型。根据离散变量结构优化问题的特点,提出了效能系数的概念,它衡量设计变量在离散邻域范围内变化对目标函数与约束函数值的影响,并研究了基于效能系数取值分类的四种主要调整方式。根据结构应力和位移约束的影响区域属性,以综合效能最大化为引导,提出了求解离散变量结构优化问题的最优综合效能法。算例结果显示该算法具有良好的优化效率,可求得问题的最优解或获得历史上的最优记录。 For the displacement constraints of structural optimization problems, the threshold parameter of key constraints is introduced. A reduced-formula of unified displacement constraint is proposed to simplify the structural optimization model. According to the characteristics of structural optimization with discrete variables, the concept of efficiency coefficient is proposed to measure the effect of design variables' variation in discrete neighborhood on cost function and constraints, and four adjusting modes in terms of the efficiency coefficient are analyzed. Based on the influence domain of stress and displacement constraints, an optimum synthetic effectiveness algorithm for structural optimization with discrete variables is proposed under the guidance of maximum synthetic effectiveness. From the analysis of numerical examples, it is indicated that the optimal solutions or best records can be obtained with high optimization efficiency by the presented algorithm.
作者 曾国华 董聪
机构地区 清华大学土木系
出处 《工程力学》 EI CSCD 北大核心 2008年第9期106-110,117,共6页 Engineering Mechanics
基金 北京市自然科学基金重点项目(8021002) 北京市重大科技项目(H030630210021)
关键词 结构优化 离散变量 位移约束 桁架结构 综合效能 structural optimization discrete variable displacement constraint truss synthetic effectiveness
  • 相关文献

参考文献11

  • 1Toakley R. Optimum design using available sections [J]. Journal of StrucRtral Engineering, ASCE, 1968, 94(5): 1219--1241. 被引量:1
  • 2Tseng C H, Wang L W, Ling S F. Enhancing branch-and-bound method for structural optimization [J]. Journal of Structural Engineering, ASCE, 1995, 121(5): 831 -- 837. 被引量:1
  • 3Juang D S, Chang W T. A revised discrete lagrangian-based search algorithm for the optimal design of skeletal structure using available sections [J]. Structural and Multidisciplinary Optimization, 2006, 31(3): 201 --210. 被引量:1
  • 4Salajegheh E, Salajegheh J. Optimum design of structures with discrete variables using higher order approximation [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191 (13/14): 1395--1419. 被引量:1
  • 5Chan C M. An optimality criteria algorithm for tall steel building design using commercial standard sections [J]. Structural Optimization, 1992, 5(1/2): 26--29. 被引量:1
  • 6Chai S, Sun H C. A relative difference quotient algorithm for discrete optimization [J]. Structural Optimization, 1996, 12(1): 45--56. 被引量:1
  • 7Groenwold A A, Stander N, Snyman J A. A regional genetic algorithm for the discrete optimal design of truss structures [J]. International Journal for Numerical Methods in Engineering, 1999, 44(12): 749--766. 被引量:1
  • 8Moh J S, Chiang D Y. Improved simulated annealing search for structural optimization [J]. AIAA Journal, 2000, 38(10): 1965-- 1973. 被引量:1
  • 9Camp C V, Bichon B J, Stovall S P. Design of steel frames using ant colony optimization [J]. Journal of Structural Engineering, 2005, 131 (3): 369-- 379. 被引量:1
  • 10Lee K S, Geem Z W. A new structural optimization method for structures with discrete sizing variables [C]// Blandford G E. Proceedings of the 2004 Structures Congress - Building on the Past: Securing the Future. Reston, United States: ASCE, 2004:1541 -- 1551. 被引量:1

同被引文献24

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部