期刊文献+

一个关于Khler平坦的定理 被引量:1

A flat theorem of Khler manifolds
下载PDF
导出
摘要 文章主要研究完备非紧的Khler流形,得到2个定理。首先在Khler流形有非负有界的全纯双截曲率和平均数量曲率满足一定的条件下得到关于数量曲率的一个积分估计和流形在不同时刻度量条件下体积保持极大增长的条件;其次在Khler流形有非负的全纯双截曲率,Ricci曲率有界和平均数量曲率满足一定条件下得到它双全纯等价于平坦的Khler流形的结果。 In the paper, Kaehler manifolds are studied, and two results are gotten. First, as Kahler manifolds with nonnegative bisection curvature exist and some conditions of average scalar curvature are satisfied, an integral estimate of scalar curvature and the condition of manifolds which have maximal volume growth are obtained. Second, as Kahler manifolds with nonnegative bisection curvature exist, and Ricci curvature is bounded, and some conditions of average scalar curvature are satisfied, the studied Kahler manifolds are isometrically biholomorphic to fiat,complete Kahler manifolds.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第9期1528-1531,共4页 Journal of Hefei University of Technology:Natural Science
基金 安徽省教育厅重点资助项目(kj2008B237) 安徽建筑工业学院博士启动基金(2007-6-3)
关键词 Khler流形 RICCI流 平坦定理 Kaehler manifold Ricci flow gap theorem
  • 相关文献

参考文献8

  • 1Hamilton R S. Formation of singularities in the ricci flow [J]. Surveys in Diff Geom, 1995,2 : 7 - 136. 被引量:1
  • 2ChenBinglong, Zhu Xiping. On complete noncompact Kahler manifolds with positive bisectional curvature[J]. Math Ann, 2003,327 : 1-23. 被引量:1
  • 3Shi W X. Complete noncompact Kahler manifolds with positive holomorphic bisectional curvature [J].Bull Amer Math, 1990,23 : 437-440. 被引量:1
  • 4Chen Binglong, Zhu Xiping. Volume growth and curvature decay of positive curved Kahler manifolds[J]. Q J Pure Math, 2005,1 : 68-108. 被引量:1
  • 5Shi W X. Rieci flow and the uniformization on the complete noncompact Kahler manifolds[J]. J Diff Geom, 1997, 45: 94-220. 被引量:1
  • 6Ni Lei, Tam L F. Kahler ricci flow and the Poincarb-Lelong equation[J]. Comm Anal Geom, 2004,12 : 111-141. 被引量:1
  • 7Ni Lei, Shi Yuguan, Tam L F. Poisson equation, PoincareLelong equation and decay on complete Kathle rmanifold [J]. J Diff Geom, 2001,57 : 339-388. 被引量:1
  • 8Mok N, Siu Y T, Yan S T. The Poincare-Lelong equation on complete Kahler manifold[J]. Compositio Math, 1981, 44:183-218. 被引量:1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部