期刊文献+

V_(2.1)TiNi_(0.4)Zr_(0.06)Cu_x(x=0-0.12)储氢合金的微结构及电化学性能 被引量:5

Microstructure and Electrochemical Properties of V_(2.1)TiNi_(0.4)Zr_(0.06)Cu_x (x=0-0.12) Hydrogen Storage Alloys
下载PDF
导出
摘要 采用磁悬浮感应熔炼方法制备了V2.1TiNi0.4Zr0.06Cux(x=0-0.12)储氢合金,经XRD、SEM、EDS和电化学测试等系统研究了Cu添加量对合金微结构及电化学性能的影响.结果表明,所有合金均由V基固溶体主相和C14型Laves第二相组成,且第二相沿主相晶界形成三维网状分布;合金主相和第二相的晶胞体积均随着Cu含量x的增加而增大.电化学性能测试表明,添加适量(x=0.03-0.06)的Cu可以提高合金的最大放电容量,并对活化性能基本没有影响;而过高的Cu添加量(x≥0.09)会降低合金的放电容量.此外,添加Cu可使合金的高倍率放电性能得到明显改善,充放电循环稳定性有所提高.在所研究的合金样品中,V2.1TiNi0.4Zr0.06Cu0.03合金具有最佳的综合性能. V2.1TiNi0.4Zr0.06Cux(x=0-0.12) hydrogen storage alloys were prepared by induction melting with magnetic levitation, and the effects of Cu content on the microstructure and electrochemical properties of the alloys were investigated by XRD, SEM, EDS, and electrochemical test. It was found that all the alloys was consisted of a V-based solid solution main phase and a C14-type Laves secondary phase in the form of three-dimensional network. The secondary phase precipitates along the grain boundaries of the main phase. The unit cells of both main phase and secondary phase expand with increasing Cu content. The results showed that the maximum discharge capacity was improved and the activation behavior was invariable as some Cu (x=0.03-0.06) was added into the V2.1TiNi0.4Zr0.06 alloy. However, higher Cu content (x =0.09) in the alloy impairs the discharge capacity. Furthermore, adding Cu into the V2.1TiNi0.4Zr0.06 alloy can improve its cycling stability and high-rate dischargeability significantly.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2008年第9期1694-1698,共5页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(50571089 50271064) 新世纪优秀人才支持计划(NCET-07-0741)资助
关键词 储氢合金 微结构 电化学性能 V基固溶体 Cu添加量 Hydrogen storage alloy Microstructure Electrochemical property V-based solid solution Cu content
  • 相关文献

参考文献21

  • 1Cho, S. W.; Han, C. S.; Park, C. N.; Akiba, E. J. Alloys Compd., 1999, 289:244 被引量:1
  • 2Cho, S. W.; Enoki, H.; Akiba, E. J. Alloys Compd., 2000, 307:304 被引量:1
  • 3Mouri, T.; lba, H. Mater. Sci. Eng. A, 2002, 329-331:346 被引量:1
  • 4Akiba, E.; Iba, H. Intermetallics, 1998, 6:461 被引量:1
  • 5Kabutomori, T.; Takeda, H.; Wakisaka, Y.; Ohnishi, K. J. Alloys Compd., 1995, 231:528 被引量:1
  • 6Okada, M.; Kuriiwa, T.; Tamura, T.; Takamura, H.; Kamegawa, A. J. Alloys Compd., 2002, 330:511 被引量:1
  • 7Chai, Y. J.; Zhao, M. S. Int. J. Hydrogen Energy, 2005, 30:279 被引量:1
  • 8Zhu, Y. F.; Pan, H. G.; Gao, M. X.; Ma, J. X.; Li, S. Q.; Wang, Q. D. Int. J. Hydrogen Energy, 2002, 27:287 被引量:1
  • 9Li, R.; Pan, H. G.; Gao, M. X.; Zhu, Y. F.; Jin, Q. W.; Lei, Y. Q. J. Alloys Compd., 2004, 373:223 被引量:1
  • 10Tsukahara, M.; Tskahasha, K.; Mishima, T.; Miyamura, H.; Sakai, T.; Kuriyama, N. J. Alloys Compd., 1995, 231:616 被引量:1

二级参考文献21

  • 1肖学章,陈长聘,王新华,陈立新,王丽,高林辉.Mg-Fe-Ni非晶储氢电极材料的微结构和电化学性能[J].物理化学学报,2005,21(5):565-568. 被引量:10
  • 2代发帮,陈立新,刘剑,郑坊平,张志鸿,雷永泉.TiV2.1Nix(x=0.2~0.6)贮氢合金的相结构及电化学性能[J].稀有金属材料与工程,2005,34(9):1500-1504. 被引量:5
  • 3Libowitz G G, Mealand A J. Master SocForum[J], 1988, 31: 177 被引量:1
  • 4ChenChangpin(陈长聘) XuHaiou(徐海鸥) LiShouquan(李寿权) WangWei(王溦) ChenLixin(陈立新).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2003,32(4):291-291. 被引量:1
  • 5ChenLixin(陈立新) LiuJian(刘剑) XiaoYou(肖游) DaiFabang(代发帮) ChenChangpin(陈长聘).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2005,34(5):705-705. 被引量:1
  • 6Tsukahara M, Takahashi K, Mishima T et al. J Alloys and Compounds[J], 1995, 224: 162 被引量:1
  • 7Tsukahara M, Takahashi K, Mishima T et al. J Alloys and Compounds[J], 1995, 226: 203 被引量:1
  • 8Lee H H, Lee K Y, Lee J Y. J Alloys and Compounds[J], 1996, 239: 63 被引量:1
  • 9Jang K J, Jung J H, Kim D M, Yu J S, Lee J Y. J Alloys and Compounds[J], 1998, 268: 290 被引量:1
  • 10Iwakura C, Choi W K, Miyauchi R et al. J Electrochemical Society[J], 2000, 147(7): 2503 被引量:1

共引文献13

同被引文献127

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部