期刊文献+

基于AFM的刻线边缘粗糙度幅值与空间频率的表征方法 被引量:1

Amplitude and Spatial Frequency Characterization of Line Edge Roughness Using AFM
下载PDF
导出
摘要 针对使用原子力显微镜测量纳米尺度半导体刻线边缘粗糙度的参数表征问题进行了研究.在对线边缘粗糙度的定义与现有测量方法进行分析的基础上,采用图像处理技术分析硅刻线的原子力显微镜测量图像的线边缘粗糙度特征,提出了线边缘粗糙度的幅值与空间频率的表征方法.其中幅值参数能够在一定意义上反映刻线边缘形貌的均匀性,而采用小波多分辨分析与功率谱密度函数(PSD)频谱分析相结合的空间频率表征方法,则有效地分析了侧墙轮廓边缘复杂的空间信息.实际测量结果表明,样本线边缘粗糙度的主要能量集中在低频区域,其主导空间频率为~0.04nm^-1,在低频部分约500nm特征波长上有最大的线边缘粗糙度分布. To obtain a metrology method for line edge roughness (LER) detection and characterization using atomic force microscope(AFM), a LER quantificational method using image processing theory was presented, which is used to analyze AFM images of silicon lines and extract LER characteristics. Two types of analysis methods of LER were established: amplitude measurement and spatial frequency analysis. The amplitude parameters can reflect the uniformity of line edge topography, while the spatial frequency characterization method combining wavelet-based multiresolution analysis with power spec- tral density (PSD) analysis can give the spatial analysis of sidewall profile effectively. The measurement results of samples show that the main energy of LER is at the low frequency region. The dominant spatial frequency of LER is ~0.04 nm^-1, and the features with a characteristic wavelength of 500 nm have the largest contribution to the LER.
出处 《纳米技术与精密工程》 EI CAS CSCD 2008年第5期367-371,共5页 Nanotechnology and Precision Engineering
关键词 纳米测量 线边缘粗糙度 原子力显微镜 小波多分辨分析 nanometrology line edge roughness atomic force microscope wavelet-based multiresolution analysis
  • 相关文献

参考文献7

  • 1[1]The International Technology Roadmap for Semiconductor[S].San Jose,CA:The Semiconductor Industry Association,2006. 被引量:1
  • 2[2]Diaz C H,Tao H J,Ku Y C,et al.An experimentally validated analytical model for gate line-edge roughness (LER) effects on technology scaling[J].IEEE Electron Device Letters,2001,22 (6):287-289. 被引量:1
  • 3[3]Gunther N,Hamadeh E,Niemann D,et al.Gate line edge roughness amplitude and frequency variation effects on intra die MOS device characteristics[J].Solid-State Electronics,2006,50 (6):1156-1163. 被引量:1
  • 4[4]Patsis G P,Constantoudis V,Tserepi A,et al.Roughness analysis of lithographically produced nanostructures:Offline measurement and scaling analysis[J].Microelectronic Engineering,2003,67/68:319-325. 被引量:1
  • 5[7]Leunissen L H A,Lawrence W G,Ercken M.Line edge roughness:Experimental results related to a twoparameter model[J].Microelectronic Engineering,2004,73/74:265-270. 被引量:1
  • 6[8]Lawrence W G Spatial frequency analysis of line edge roughness in nine chemically related photoresist[C]// Proceedings of SPIE-Advances in Resist Technology and Processing.Santa Clara,CA,USA,2003,5039:713-724. 被引量:1
  • 7[9]Atsuko Yamaguchi,Osamu Komuro.Characterization of line edge roughness in resist patterns by Fourier analysis and auto-correlation function[C] // Microprocess and Nanotechnology Conference.Tokyo,Japan,2002:80-81. 被引量:1

同被引文献12

  • 1Orji N G, Martinez A, Dixson R G, et al. Progress on imple- mentation of a CD-AFM-based reference measurement system [ C ]// Proceedings of SPIE--The International Society For Optical Engineering. San Jose, United States, 2006: 615200- 1-12. 被引量:1
  • 2Mahmood I A, Moheimani S O. Making a commercial AFM more accurate and faster using positive position feedback con- trol [ J ]. Review of Scientific Instruments, 2009, 80 ( 6 ) : 063705-1-8. 被引量:1
  • 3Kwon J, Hong J, Kim Y S, et al. Atomic force microscope with improved scan accuracy, scan speed, and optical vision [J]. Review of Scientific Instruments, 2003, 74(10) : 4378- 4383. 被引量:1
  • 4Prunici P, Hess P. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs [J]. Ultramicroscopy, 2008, 108(7) : 642-645. 被引量:1
  • 5Gonda S, Kinoshita K, Noguchi H, et al. AFM measurement of linewidth with sub-nanometer scale precision [ J ]. Progress in Biomedical Optics and Imaging Proceedings of SPIE, 2005, 5752( 1 ) :156-162. 被引量:1
  • 6Dai G L, Koenders L, Pohlenz F, et al. Accurate and tracea- ble calibration of one-dimensional gratings [ J ]. Measurement Science and Technology, 2005, 16(6) : 1241-1249. 被引量:1
  • 7Paulo A S, Garc6 R. High-resolution imaging of antibodies by tapping-mode atomic force microscopy: Attractive and repul- sive tip-sample interaction regimes [J]. Biophysical Journal, 2000, 78(3) : 1599-1605. 被引量:1
  • 8Reich Z, Kapon R, Nevo R, et al. Scanning force microscopy in the applied biological sciences [ J ]. Biotechnology Ad-vances, 2001, 19(6) : 451- 485. 被引量:1
  • 9Jusko O, Zhao X, WOlff H, et al. Design and three dimen- sional calibration of a measuring scanning tunneling micro- scope for metrological applications[ J]. Review of Scientific In- struments, 1994, 65(8): 2514-2518. 被引量:1
  • 10王岳宇,赵学增,褚巍.基于表面形貌空间频率特征的AFM操作模式(英文)[J].纳米技术与精密工程,2008,6(4):293-296. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部