期刊文献+

基于本体构建的协同推荐研究 被引量:3

Cooperative Recommendation Based on Ontology Construction
下载PDF
导出
摘要 通过构建领域本体,利用用户兴趣与领域本体中概念的映射关系,构建用户兴趣本体,发掘用户兴趣模式。研究用户兴趣本体相似度的计算方法,并通过用户兴趣相似度进行垂直加权,通过时间新颖度进行水平加权,从而利用改进的加权关联规则挖掘算法对用户感兴趣的领域本体中的概念进行挖掘,实现面向内容的协同推荐。 This paper constructs domain Ontology firstly, and constructs user interest Ontology by the representation between user interest and domain Ontology, then construct user interest mode. h studies user interest Ontology similarity measure, and identifies the vertical weight by user interest similarity, the horizontal weight by time novelty. At last, it uses the improved weighted association rule algorithm to mine the concepts in domain Ontology, and realizes the cooperative recommendation oriented to content.
出处 《现代图书情报技术》 CSSCI 北大核心 2008年第9期53-57,共5页 New Technology of Library and Information Service
关键词 领域本体 用户兴趣本体 协同推荐 关联规则 Domain Ontology User interest Ontology Cooperative recommendation Association rule
  • 相关文献

参考文献10

二级参考文献28

  • 1李景山,廖华明,侯紫峰,徐志伟.普及计算中基于接口语义描述的动态服务组合方法[J].计算机研究与发展,2004,41(7):1124-1134. 被引量:20
  • 2Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases [C]//Proceedings of the 21st VLDB Conference. Zurich, Switzerland, 1995 : 254-262. 被引量:1
  • 3Hipp J, Untzer U G, Nakhaeizadeh G. Algorithms for association rule mining-a general survey and comparison[J]. SIGKDD Explorations, 2000, 2(2):1-58. 被引量:1
  • 4John D H, Soon M C. Mining association rules using inverted hashing and pruning [J]. Information Processing Letters,2002,83 (4) :211-220. 被引量:1
  • 5Chen Guoqing, Wei Qiang, Liu De, et al. Simple association rules (SAR)and the SAR-based rule discovery [J]. Computers and Industrial Engineering, 2002,43 ( 4 ) : 721-733. 被引量:1
  • 6Wang Wei, Yang Jiong. Efficient mining of weighted association rules[ C ]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002: 270-274. 被引量:1
  • 7Cai C H, Ada W C, Cheng C H, et al. Mining association rules with weighted items [ C ]// Proceedings of the International Database Engineering and Applications Symposium.Wales, UK, 1998: 68-77. 被引量:1
  • 8Murtagh F, Farid M. Weighted association rule mining using weighted support and significance framework [ C ]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC,USA, 2003 : 661-666. 被引量:1
  • 9Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [C]//Proceedings of the ACM SIGMOD Conference on Management of Data. Washington DC, USA, 1993:207-216. 被引量:1
  • 10Agrawal R, Srikant R. Fast algorithms for mining association rules[ C]//Proceedings of the 20th International Conference on Very Large Databases. Santiago, Chile, 1994:487-499. 被引量:1

共引文献276

同被引文献43

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部