期刊文献+

养老基金最低收益保证制度下的最优资产配置——来自中国1998-2008年数据的模拟分析 被引量:16

The Study on Minimum Return Guarantee System and Optimal Asset Allocation of Pension Fund
下载PDF
导出
摘要 文章主要研究养老基金最低收益保证制度及其框架下的资产配置问题。利用鞅方法创新性地给出了最优资产配置策略,随后分析了最低收益保证制度对最优资产配置的影响。结果表明,外部机构的利润分享比例越大,保证额度越高,养老基金投资风险资产的比例越高,但随着时间的推移,其风险投资将逐步降低。最后,文章利用所得结论为我国设立最低收益保证制度提供了建议:即我国应设立相对额度的最低收益保证制度;应由政府部门或非盈利机构提供这种最低收益保证,且不宜采取利润分享原则;保证额度应适度,过高会导致养老基金的投资风险过高,而过低则达不到稳定退休者收入的效果。 The paper mainly studies the minimum return guarantee system of pension fund and the issue of asset allocation in this framework. Using martingale method, it gives a new way to provide the optimal asset allocation strategy and analyzes the effect of minimum return guarantee system on optimal asset allocation. The results show that higher the profit-sharing ratio of external institutions and larger the guarantee liability amount, larger the portion of pension fund invested in risk assets. And it also indicates that the amount of pension fund invested on risk assets will be reduced gradually. Finally, the paper gives suggestions on how to build up minimum return guarantee system in China, including setting up relative guarantee liability amount, letting governments or non-profit organizations provide minimum return guarantee and making adequate guarantee liability amount.
出处 《财经研究》 CSSCI 北大核心 2008年第9期112-121,共10页 Journal of Finance and Economics
基金 国家自然科学基金资助项目(70773076)
关键词 养老基金 资产配置 最低收益保证制度 鞅方法 pension fund asset allocation minimum return guarantee system martingale method
  • 相关文献

参考文献11

  • 1Boulier J F, Huang S, Taillard G. Optimal investment under stochastic interest rates: The case of a protected defined contribution pension fund. Insurance[J]. Mathematics and Economics 2001,28 : 173- 189. 被引量:1
  • 2Ibbotson R G,Kaplan P D. Does asset allocation policy explain 40, 90, or 100 percent of performance? [J]. Financial Analysts Journal, January/February,2000 ; 26-33. 被引量:1
  • 3Menoncin F. Optimal portfolio and background risk: An exact and an approximated solution. Insurance[J]. Mathematics and Economics 2002,31 : 249- 265. 被引量:1
  • 4Battocchio P, Mcnoncin F, Scaillet O. Optimal asset allocation for pension funds under mortality risk during the accumulation and decumulation phases[R]. FAME Discussion Paper N, 66, 2003. 被引量:1
  • 5Menonein F, Scaillet O. Mortality risk and real optimal asset allocation for pension funds[R]. FAME Research Paper N,101, September, 2003. 被引量:1
  • 6Cairns A J G, Blake D, Dowd K. Stochastic lifestyling; Optimal dynamic asset allocaion for defined contribution pension plans[J]. Journal of Economic Dynamics and Control,2006, 30(5): 843-877. 被引量:1
  • 7Battocchio P, Menoncin F. Optimal pension management in a stochastic framework Insurance[J]. Mathematics and Economics 2004,34 : 79- 95. 被引量:1
  • 8Deelstra G, Grasselli M, Koehl P F. Optimal investment strategies in the presence of a minimum guarantee Insurance[J]. Mathematics and Economics 2003,33:189-207. 被引量:1
  • 9Romaniuk K. The optimal asset allocation of the main types of pension funds; A unified framework[R]. ESSEC Business School Working Paper,2007. 被引量:1
  • 10Duffie J D. Dynamic asset pricing theory[M]. Princeton University Press, Princeton, New Jersey, 1996,2 edition. 被引量:1

同被引文献204

引证文献16

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部