期刊文献+

一种点云数据的优化修正量光顺算法

Fairing Algorithm with Optimized Modification Amount of Cloud Data
下载PDF
导出
摘要 逆向工程中,采样数据混有的噪声需要加以处理,数据处理的结果直接影响重构曲线曲面的精度。为了获取能真实客观反映原始设计意图的点云数据,本文研究了优化修正量光顺算法。在分块进行粗、精光顺处理采样数据过程中,分别由曲率及其一阶差分符号的变化来辨识坏点。坏点的修正方向直接按照能量函数方程确定出由型值点指向三角形形心的正或负的G向;修正量由赋初值开始,按照能量函数方程递进搜索,满足能量代数式最小值后搜索停止。通过实例验证,改进算法能够满足曲线曲面重构的光顺性要求,可有效保留曲线的原有形状。 In reverse engineering, the noise needs to be processed, which is in existence among measured data. The data processed result directly influences the reconstructed cm've and surface precision. In order to acquire point cloud data which can truly reflect the design view, a fairing algorithm with optimized modification amount of cloud data is researched. During the measured data to be processed which consists of rough and fine fairing in each block, the bad data is identified according to the sign of curvature and its one-order differ respectively. The modified direction of the bad point is along the positive or negative way of G direction which points to the triangle's center from the point according to the energy function equation directly. An initial value of the modified distance is set to search the value by an incremental change according to the equation. The search is terminated untill the energy function equation satisfies the minimum value. The modified algorithm can meet the faired requirement of curve and sur- face reconstruction, which is proved by some tests, and it is good for preserving the original outline.
出处 《工具技术》 北大核心 2008年第9期41-45,共5页 Tool Engineering
关键词 优化修正量 坏点修正 修正方向确定 能量函数 optimized modification amount, bad points identified, modification direction decided, energy function
  • 相关文献

参考文献10

  • 1Varady T., Martin R R., Coxt J. Reverse engineering of geometric models-an introduction. Computer Aided Design. 1997, 29(4) : 255 - 268 被引量:1
  • 2Kjellander J A P.. Smoothing of cubic parametric splines. Computer Aided Design. 1983,15(3): 175- 179 被引量:1
  • 3Kjellander J A P.. Smoothing of bicubic parametric surfaces. Computer Aided Design. 1983, 15(5) : 288 - 293 被引量:1
  • 4Farin G., Rein G., Sapidis N et al. Fairing of cubic B-spline curves. Computer Aided Geometric Design. 1987(4) : 91 - 103 被引量:1
  • 5Sapidis N., Farin G.. Automatic fairing algorithm for B-spline curves. Computer Aided Design. 1990, 22(2) : 121 - 129 被引量:1
  • 6Pigounakis KG, Kaklis PD. Convexity-preserving fairing. Computer Aided Design. 1996, 28(12): 981-984 被引量:1
  • 7苏步青,刘鼎元著..计算几何[M].上海:上海科学技术出版社,1981:297.
  • 8Eck M., Jaspert R.. Design fair curves and surfaces. Sapidis N.S. 1994:45-60 被引量:1
  • 9G H Liu, Y S Wang, Y F Zhang. Adaptive fairing of digitized point data with discrete curvature. Computer-Aided Design. 2002, 34: 309- 320 被引量:1
  • 10Farin G, Sapidis N. Curvature and faimess of curves and surface. IEEE, Computer Graphics & Application. 1989, 5: 52- 57 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部