期刊文献+

基于故障树分析的光纤陀螺用探测器组件可靠性分析 被引量:7

Reliability analysis of photoelectric detector module used in FOG based on fault tree analysis
下载PDF
导出
摘要 采用故障树分析(FTA)方法对探测器组件进行故障树分析及敏感应力分析,确定探测器组件的敏感应力,从而为探测器组件加速试验的开展提供理论依据,为光纤陀螺的寿命评估提供建议。通过广泛收集探测器组件故障信息和分析其物理化学性能、制造工艺和性能参数,并结合探测器组件的工作环境和使用条件,建立了探测器组件的故障树;由故障树定性分析得出探测器组件故障树的最小割集;通过故障模式统计分析,得到噪声电压变大和响应度降低是探测器组件的主要故障模式,针对探测器组件的主要故障模式进行了敏感应力分析,确定温度应力是探测器组件的敏感应力。分析结果表明以温度应力为主要应力对探测器组件进行加速试验是可行的。 The Fault Tree Analysis (FTA) and sensitive stress analysis of photoelectric detector module (PIN-FET) were implemented to confirm the sensitive stress of PIN-FET. Based on that, some theoretical basis could be provided for PIN-FET's Accelerated Test (AT) and some advice could be given for the FOG's life evaluation. The fault tree of PIN-FET was built in accordance with the operation environment and condition by collecting failure information and analyzing performance parameters, The minimum cut sets were obtained through fault tree qualitative analysis. The increasing of noise pressure and the decreasing of responsivity were found to be the dominant failure modes from the statistical information. After the analysis of sensitive stress for the dominant failure modes, the temperature stress was confirmed to be the sensitive stress of PIN-FET. The analysis result proves that the Accelerated Test under temperature stress for PIN-FET is feasible.
出处 《中国惯性技术学报》 EI CSCD 2008年第4期497-501,共5页 Journal of Chinese Inertial Technology
基金 国防预研项目(513090601)
关键词 探测器组件 光纤陀螺 故障树分析 故障模式 敏感应力 photoelectric detector module(PIN-FET) FOG fault tree analysis failure mode sensitive stress
  • 相关文献

参考文献8

二级参考文献12

  • 1[1]Piotrowski J, Kaniewski J. Optimization of InGaAs infrared photovoltaic detectors[J]. IEE Proc.Optoelectron., 1999, 146(4): 173-176. 被引量:1
  • 2[2]Rogalski A. Infrared detectors:Status and trends[J]. Progress in Quantum Electron., 2003,27: 59-210. 被引量:1
  • 3[3]Budianu E, Purica M, Rusu E. Heterostructures on InP substrate for high-speed detection devices over a large spectral range (0.8~1.6 μm)[J]. Microelectronic Engineering, 2000, 51-52:393-400. 被引量:1
  • 4[4]Forrest S R. Performance of InxGa1-xAsyP1-y photodiodes with dark current limited by diffusion, generation recombination, and tunneling[J]. IEEE J. of Quantum Electron., 1981,17(2):217-226. 被引量:1
  • 5[5]Moll J L. Physics of Semiconductor[M]. New York: McGraw-Hill, 1964. 239-261. 被引量:1
  • 6[6]Forrest S R, Leheny R F, Nahory R E. In0.53Ga0.47As photodiodes with dark current limited by generationrecombination and tunneling[J]. Appl.Phys.Lett., 1980, 37(3): 322-325. 被引量:1
  • 7[7]Ahrenkiel R K, Ellingson R, Jonhnston S, et al. Recombination lifetime of In0.53Ga0.47As as a function of doping density[J]. Appl.Phys.Lett., 1998, 72(26): 3 470-3 472. 被引量:1
  • 8[8]Bothra S, Tyagi S, Ghandhi S K, et al. Surface recombination velocity and lifetime in InP[J].Solid-State Electron.,1991,34(2):47-50. 被引量:1
  • 9[9]Trommer R, Albrecht H. Confirmation of tunneling current via traps by DLTS measurements in InGaAs photodiodes[J]. Jpn. J. Appl.Phys., 1983, 22(6): L364-L366. 被引量:1
  • 10[6]Krishnan K S,Lahti D G,Smith W D,et al.Optical fiber attenuation in proton radiation[C]//SPIE,1996,2811:95-104. 被引量:1

共引文献40

同被引文献48

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部