期刊文献+

对流占优扩散方程的最小二乘特征混合有限元方法

A least-squares mixed finite element procedure with the method of characteristics for convection-dominated diffusion equations
下载PDF
导出
摘要 将最小二乘混合有限元法与特征有限元法有效地结合起来处理对流占优扩散方程。通过适当选取最小二乘能量泛函,数值方法可以分裂成2个独立的子格式,并且数值方法可以同时逼近解及其梯度,选取较大的时间步长。收敛性分析表明在一定范数意义下,这种方法具有最优收敛阶。 A least-squares mixed finite element procedure with the method of characteristics for convection-dominated diffusion equations was presented. By properly selecting the least-squares functional, the procedure can be split into two independent subprocedures. The solution u and the flux a can be directly obtained. Moreover the method permits the use of large steps. The optimal convergence analysis was established.
作者 郭会
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第8期6-10,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金数学天元基金资助项目(10726032)
关键词 最小二乘混合有限元 特征 对流占优扩散方程 收敛性分析 least-squares mixed finite element characteristics convection-dominated diffusion equafiom convergence analysis
  • 相关文献

参考文献9

  • 1罗振东著..混合有限元法基础及其应用[M].北京:科学出版社,2006:416.
  • 2YANG Danping. Analysis of least-squares mixed finite dement methods for nonlinear nonstationary convection-diffusion problems[ J]. Mathematics of Computioion, 1999, 69(231) :929-963. 被引量:1
  • 3DOUGLAS Jr J, RUSSFLI, T F. Numerical methods for convection-dominated diffusion problemes based on combining the method of characteristics with finite element or finit difference procedures[J]. SIAM J Numer Anal, 1982, 19(5) :871-885. 被引量:1
  • 4RUI Hongxing, KIM Seokchan, KIM Sang Dong. A remark on least-squares mixed element methods for reaction-diffusion problems[J]. J Comp Appl Math, 2007, 202(2):230-236. 被引量:1
  • 5ADAMS R A. Sobolev Spaces[M]. New York: Academic Press, 1975. 被引量:1
  • 6RAVIART P A, THOMAS J M. A mixed finite dement method for 2nd order elliptic problems, Mathematical Aspects of finite dement methods, Lecture Notes in Mathematics[ C]. Beriln: Springer, 1977, 606:292-315. 被引量:1
  • 7NEDELEC J C. Mixed finite element in R^3 [J]. Numer Math, 1980, 35:315-341. 被引量:1
  • 8CIARLET P G. Finite element methods for elliptic problems[M]. New York: North-Holland, 1978. 被引量:1
  • 9WHEELER M F. A priori L^2 error estimates for Galerkin approximation to parabolic partial differential equations[J]. SIAM Numer Anal, 1973, 10(4) :723-759. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部