期刊文献+

在噪声抵消应用中自适应滤波算法性能的仿真比较 被引量:9

Simulation Comparison of Adaptive Filtering Algorithms in Noise Cancellation Application
下载PDF
导出
摘要 介绍了噪声抵消的原理和从强噪声背景中自适应滤波提取有用信号的方法。利用模糊逻辑和RBF神经网络的等价性将模糊逻辑和神经网络有机的结合来构成模糊神经网络,并对BP神经网络、RBF神经网络和模糊神经网络三种基本自适应算法进行了对比研究。计算机模拟仿真结果表明,这几种算法都能通过有效抑制各种干扰来提高强噪声背景中的信号检测特性。相比之下,模糊神经网络算法具有良好的收敛性能,除收敛速度快于BP神经网络算法和RBF神经网络算法以及稳定性强外,而且具有更高的起始收敛速率,更小的权噪声,更大的抑噪能力。 The theory of noise canceling and the method for extracting desired signal from strong background noise using adaptive filtering are described. The configuration of fuzzy neutral network is also presented by combining fuzzy logic and neutral network based on their equivalence. And then BP neural network algorithm, RBF neural network algorithm and fuzzy neural network algorithm are compared. Computer simulation results show that all of these adaptive algorithms can improve the detection of weak signal in strong background noise. In comparison, the performance of fuzzy neural network algorithm is much better than those of BP neural network algorithm and RBF neural network algorithm. Besides much faster convergence speed, the behavior of fuzzy neural network filtering coefficients is much more stable; and fuzzy neural network has faster initial convergence rate, lower maladjustment noise and better robustness against noise and disturbance.
出处 《电子测量与仪器学报》 CSCD 2008年第4期57-62,共6页 Journal of Electronic Measurement and Instrumentation
基金 国家863课题资助项目(编号:2001AA602018-04)
关键词 噪声抵消 自适应滤波 模糊逻辑 模糊神经网络 noise cancellation, adaptive filtering, fuzzy logic, fuzzy neural network.
  • 相关文献

参考文献9

二级参考文献26

  • 1孙勇,张劼,景博.一种改善分布式参数检测数据性能的新方法[J].电测与仪表,2004,41(6):8-10. 被引量:6
  • 2孙勇,景博,张吉力.最优加权与递推最小二乘法相结合的多传感器信息融合[J].传感技术学报,2004,17(4):630-632. 被引量:25
  • 3林家瑞,朱帆三,陈瑞红,邓东云.强背景噪声下微弱生理电信号的检测与处理[J].华中理工大学学报,1994,22(9):119-123. 被引量:5
  • 4Julie E.Greenberg et al.Modified LMS Algorithms for Speech Processing with an Adaptive Noise Canceller[J].IEEE Transactions on Speech and Audio Processing(S1063-6676),1998,6(4):338-351. 被引量:1
  • 5M.Tanaka,Y.Kaneda et al.Fast Projection Algorithm and Its Step Size Control[C]//ICASSP′95(2):945-948. 被引量:1
  • 6M Rupp,R Frenzel.The Behavior of LMS and NLMS Algorithms with Delayed Coefficient Update in the Presence of Spherically Invariant Processes[J].IEEE Trans.Signal Processing(S1053-587X),1994,42 (3):668-672. 被引量:1
  • 7D Slock.On the Convergence Behavior of the LMS and the Normalized LMS Algorithms[J].IEEE Transactions on Signal Processing,1993,41(9):2811-2825. 被引量:1
  • 8N J Bershad.Analysis of the normalized LMS algorithm with Gaussian inputs[J].IEEE Trans.Acoust.,Speech,Signal Processing(S0096-3518),1986,34:793–806. 被引量:1
  • 9Martin Bouchard,Stephan Quednau.Multichannel Recursive-Least-Squares Algorithms and Fast-Transversal-Filter Algorithms for Active Noise Control and Sound Reproduction Systems[J].IEEE Transactions On Speech And Audio Processing,2000,8(5):606-618. 被引量:1
  • 10M Ibnkahla et al. Satellite mobile communications:Technologies and challenges[C].In:Proceedings of the IEEE,2004;2(2):312~339. 被引量:1

共引文献45

同被引文献83

引证文献9

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部