期刊文献+

基于最优小波包变换的功率测量算法研究 被引量:2

Research on Power Measurement Algorithm Based on Optimum Wavelet Packet Transform
下载PDF
导出
摘要 本文深入分析了正交小波包的原理和最优小波包基的选取方法,首次提出了基于最优小波包的电压、电流有效值及有功功率的分频带测量算法,该算法可自适应划分频带,并完成基波和谐波有功功率的测量。本文通过采用db40小波进行仿真实验,可看出基于最优小波包的电压、电流有效值及有功功率分频带测量算法是可行的,其电压、电流有效值及有功功率在总频带上的相对误差小于6×10-5,有功功率在各子频带测量的引用误差小于8.3×10-5。 The principle of orthogonal wavelet packet transform and selection of optimum wavelet packet basis were deeply analyzed, and then a novel sub-band RMS and active power measurement algorithm based on optimum wavelet packet transform was proposed, which can be used to divide the band into sub-bands adaptively and to measure active powers of fundamental and harmonics. The computer simulation experiment using db40 wavelets shows that the proposed algorithm is feasible, and the measurement relative error of RMS voltage, RMS current and active power is less than 6 ×10^-5 on the whole band, the measurement fiducial error of active power is less than 8.3×10^-5on the sub-band.
出处 《电子测量与仪器学报》 CSCD 2008年第4期30-33,共4页 Journal of Electronic Measurement and Instrumentation
关键词 最优小波包 功率测量 有效值测量 optimum wavelet packet, power measurement, RMS measurement.
  • 相关文献

参考文献6

二级参考文献18

  • 1王学伟,高朝,张旭明.高准确度、宽频带90°数字相移网络的设计[J].电测与仪表,2004,41(11):36-38. 被引量:8
  • 2杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:151
  • 3Weon-Ki Yoon,M.J.Devaney.Power Measurement Using the Wavelet Transform[J].IEEE Trans.on Instrum. Meas. 1998, 47(5): 1205-1210. 被引量:1
  • 4Weon-Ki Yoon,M.J.Devaney.Reactive Power Measurement Using the Wavelet Transform[J] IEEE Trans.on Instrura. Meas. 2000, 49(2): 246-252. 被引量:1
  • 5Effrina Yanti Hamid, Zen-Iniro Kawasaki, Redy Mardiana. Wavelet Packet Transform for Rms and Power Measurements [J].Power Engineering Review, IEEE. 2001, 21(9): 49-51. 被引量:1
  • 6Levent Eren, M.J.Devaney. Calculation of Power System Harmonics via Wavelet Packet[J].IEEE Instrumentation and Measurement Technology Conference. 2002:21-23. 被引量:1
  • 7A. N. Akansu and M. J. T. Smith, Subband and Wavelet Tranforms Design and Application. Norwell, MA:Kluwer, 1996. 被引量:1
  • 8Kusters N I,Moore W J M.On definition of reactive power under nonsinuso idal conditions. IEEE Trans Power Appl. Syst,1980(5). 被引量:1
  • 9Czarnecki L S.Considerations on the Reactive Power in Nonsinusoidal Situations. IEEE Trans on IM,1985(3). 被引量:1
  • 10Weon-Ki Yoon,M.J. Devaney, Reactive Power Measurement Using the Wavelet Transform, IEEE Trans.on Instrum. Meas,2000(2). 被引量:1

共引文献25

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部