期刊文献+

基于目标模糊置信度描述驱动的区域能量进化增长图像分割算法 被引量:1

Novel Region Energy Evolution Image Segmentation Based on Fuzzy Object Confidence Description
下载PDF
导出
摘要 为了克服经典区域增长算法在复杂目标与背景分布情况下,停止条件难以确定的不足,提出基于目标模糊置信度描述驱动的区域能量进化增长图像分割算法.该算法结合了主动轮廓模型(Active contour model,ACM)、目标数据分布域描述与区域增长三者的优点,首先利用分割目标的支持向量数据域描述将待分割图像转化为相对于分割目标的模糊置信度表示,因为分割过程充分利用了有监督学习策略得到的目标特征分布情况,使得本文提出的算法具有更高的稳定性和更加广泛的适用范围,特别是对目标灰度分布不均或存在多纹理的目标也可以得到较好的分割结果.在区域增长进行分割时,引入了新的区域能量表示模型作为区域增长的结束判决条件,分割时逐渐降低目标模糊置信度的门限,通过对区域能量模型的动态优化来逼近最佳分割结果。对比实验结果表明本文提出的算法具有更大的灵活性和更好的分割性能。 To overcome the difficulty to search the stop condition in a conventional region growing algorithm, a novel region energy evolution image segmentation method is put forward, which couples the merits of support vector domain description, Mumford-Shah active contour energy model rand region growing. The input image data are transform into fuzzy object confidence description firstly by using the support vector domain description model, so the advantages of supervised kernel learning model and the global region distribution information could be exploited to enhance the segmentation performance. On the other hand, a new region-based image energy term in region evolution based on the fuzzy object confidence description is presented. It is more robust than the classical region growing rand active contour method, because it takes into account the optimal image object fuzzy confidence description knowledge of human being and feasible energy model as well. In the region growing processing step, the confidence threshold is updated gradually, so the optimal segmentation results are obtained by dynamic optimizing the novel energy model. Experimental results have demonstrated the flexibility and better performance of this novel region growing image segmentation method.
作者 胡正平 谭营
出处 《自动化学报》 EI CSCD 北大核心 2008年第9期1047-1052,共6页 Acta Automatica Sinica
基金 北京大学视觉与听觉信息处理国家重点实验室开放基金(0507) 燕山大学博士基金(B287) 河北省自然科学基金(F2008000891)资助~~
关键词 图像分割 区域增长 支持向量数据域描述 模糊置信度 Image segmentation, region growing, support vector domain description (SVDD), fuzzy confidence
  • 相关文献

参考文献10

  • 1唐明,马颂德.非参数化区域竞争方法:一种新的图像分割框架[J].自动化学报,2001,27(6):737-743. 被引量:6
  • 2Chris C K, Udupa J K, Saha P K, Zhu G Y. Iterative relative fuzzy connectedness for multiple objects with multiple seeds. Computer Vision and Image Understanding, 2007, 107(3): 160-182. 被引量:1
  • 3Udupa J K, Saha P K, Lotufo R A. Relative fuzzy connectedness and object definition: theory, algorithms, and application in image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(11): 1485-1500. 被引量:1
  • 4Lee S, Crawford M M. Unsupervised multistage image classification using hierarchical clustering with a Bayesian similarity measure. IEEE Transactions on Image Processing, 2005, 14(3): 312-320. 被引量:1
  • 5Stewart R D, Fermin I, Opper M. Region growing with pulse-coupled neural networks: an alternative to seeded region growing. IEEE Transactions on Neural Networks, 2002, 13(6): 1557-1562. 被引量:1
  • 6Greenspan H, Ruf A, Goldberqer J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Transactions on Medical Imaging, 2006, 25(9): 1233-1245. 被引量:1
  • 7Raquel V C, Veronical M B, Oscar Y S. Coupling of radialbasis network and active contour model for multispectral brain MRI segmentation. IEEE Transactions on Biomedical Engineering, 2004, 51(3): 459-470. 被引量:1
  • 8Bresson X, Pierre V, Thiran J P. Multiscale active contours. International Journa/ of Computer Vision M, 2006, 70(3): 197-211. 被引量:1
  • 9Jacob M, Blu T, Unser M. Efficient energies and algorithms for parametric snake. IEEE Transactions on Image Processing, 2004, 13(9): 1231-1244. 被引量:1
  • 10Tax D M J, Duin R P W. Support vector domain description. Pattern Recognition Letters, 1999, 20(11-13): 1191-1199. 被引量:1

二级参考文献4

  • 1Tang M,15th ICPR,2000年 被引量:1
  • 2Ma S D,Image and Vision Computing,1998年,6卷,43页 被引量:1
  • 3Zhu S C,IEEE Trans PAMI,1996年,20卷,3期,884页 被引量:1
  • 4Chen S Y,CVGIP:Graphical Models Image Processing,1991年,53卷,5期,457页 被引量:1

共引文献5

同被引文献13

  • 1Stelios Krinidis, Vassilios Chatzis. A robust fuzzy local infor- mation C-means clustering algorithm [J]. IEEE Transactions on Image Processing, 2010, 19 (5): 1328-1337. 被引量:1
  • 2Benoit Caldairou, Nicolas Passat, Piotr A Habas, et al. A non-local fuzzy segmentation method: Application to brain MRI [J]. Pattern Recognition, 2011, 44 (9): 1916-1927. 被引量:1
  • 3Zexuan Ji, Yong Xia. Fuzzy local Gaussian mixture model for brain MR image segmentation [J]. IEEE Transactions on In- formation Technology in Biomedicine, 2012, 2 (5): 311-317. 被引量:1
  • 4Jooyoung Park, Daesung Kang, Jongho Kim, et al. SVDD- based pattern denoising [J]. Neural Computation, 2007, 19 (7) : 1919-1938. 被引量:1
  • 5Guray Erus, Evangelia I, Zacharaki, et al. Learning high-di- mensional image statistics for abnormality detection on medical image [J]. IEEE Transactions on Medical Imaging, 2010, 10 (3): 139-145. 被引量:1
  • 6AK Jain. Data clustering: 50 years beyond K-means [J]. Pattern Recognition Letters, 2010, 31 (8).. 651-666. 被引量:1
  • 7aUmer Javed, Muharnrnad M Riaz, Abdul Ghafoor, et al. MRI brain classification using texture features, fuzzy weigh- ting and support vector machine [J]. Progress In Electromag- netics Research B, 2013, 53: 73-88. 被引量:1
  • 8MRBrainS. MICCAI grand challenge on MRBrain image seg- mentation 2013[EB/OL]. [2013-10-05]. Available: http://mr- brainsl3, isi. uu. nl/download, php. 被引量:1
  • 9Scherrer B, Forbes F, Garbay C, et al. Distributed local MRF models for tissue and structure brain segmentation [J]. IEEE Transactions on Medical Imaging, 2009, 28 ( 8 ) : 1278-1295. 被引量:1
  • 10赵峰,张军英,刘敬.一种改善支撑向量域描述性能的核优化算法[J].自动化学报,2008,34(9):1122-1127. 被引量:16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部