期刊文献+

一类含参变量的Sierpinski垫片的Hausdorff测度 被引量:2

The Hausdorff Measure of a Class of Sierpinski Carpets with Parameter
下载PDF
导出
摘要 Sierpinski垫片是具有严格自相似性的经典分形集之一.本文给出了一类含参变量的Sierpinski垫片.通过它在x轴上的投影估计了这类Sierpinski垫片的Hausdorff测度的下界,然后精心构造了一个仿射变换,将参变量的范围由(0,π/3)的讨论转换到(π/3,π)的讨论,从而得到了这类Sierpinski垫片的Hausdorff测度的精确值. Sierpinski carpet is one of the classic fractals with strict self-similar property. In this paper, we will give a class of Sierpinski carpets with parameter. The lower bound for the Hausdorff measure of this kind Sierpinski carpet with parameter is given by the project on x-axis, At the same time, through a skillful affine mapping that was constructed, we transfer the parameter which in the interval (0,π/3) into the interval (π/3,π) . Finally the exact value of the Hausdorff measure of these sets is obtained.
出处 《大学数学》 北大核心 2008年第4期33-37,共5页 College Mathematics
关键词 SIERPINSKI垫片 迭代函数系 HAUSDORFF维数 HAUSDORFF测度 Sierpinski carpet iterated function systems Hausdorff dimensions Hausdorff measure
  • 相关文献

参考文献5

  • 1ChenDan,YangXiaoling.HAUSDORFF MEASURES OF A CLASS OF SIERPINSKI CARPETS[J].Analysis in Theory and Applications,2004,20(2):167-174. 被引量:4
  • 2Zhu Zhi-wei, Zhou Zuo-ling, Luo Jun. The packing measure of a class of generalized Sierpinski sponges [J]. Chinese Journal of Contemporary Mathematics, 2004, 25 (1) :. 被引量:1
  • 3Ji Zhou, Ya Han-xiong. The Hausdorff measure of a class of Sierpinski carpets[J]. J. Math. Anal. Appl, 2005, (305): 121-129 被引量:1
  • 4Falconer K J. Techniques in fractal geometry[M]. New York: John Wiely and Sons, 2000. 被引量:1
  • 5文志英.分形几何的数学基础[M].上海:上海科技教育出版社,2002.. 被引量:5

共引文献7

同被引文献7

  • 1Ji Zhou, Ya Han-xiong. The Housdorff measure of a class of Sierpinski carpetS[ J]. J. Math. Anal. Appl,2005, (305) : 121 - 129. 被引量:1
  • 2曾文曲,刘世耀等.分形几何[M].沈阳:东北大学出版社,2001. 被引量:2
  • 3XIONG Y H, ZHOU J. The Housdorff measure of a class of Sierpinski carpets[ J]. Journal of Mathematical Analysis and Applications, 2005, 305 (1): 121-129. 被引量:1
  • 4CHEN J, FAN Q J. Estimation of Hausdorff measure of a class of Sierpinski carpet [ J ]. Journal of Jilin Normal University, 2009, 30 ( 1 ) : 88 - 89. 被引量:1
  • 5FALCONER K J. Fractal geometry: Mathematical foundations and applications[ M]. Chichester, United Kingdom: John Wiley & Sons Ltd, 2003. 被引量:1
  • 6FALCONER K. Techniques in fractal geometry[ M]. New York: John Wiely and Sons, 1997. 被引量:1
  • 7ChenDan,YangXiaoling.HAUSDORFF MEASURES OF A CLASS OF SIERPINSKI CARPETS[J].Analysis in Theory and Applications,2004,20(2):167-174. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部