期刊文献+

结合似然关系模型和用户等级的协同过滤推荐算法 被引量:20

A Collaborative Filtering Recommendation Algorithm Combining Probabilistic Relational Models and User Grade
下载PDF
导出
摘要 针对传统协同过滤推荐算法的稀疏性、扩展性问题,提出了结合似然关系模型和用户等级的协同过滤推荐算法.首先,定义了用户等级函数,采用基于用户等级的协同过滤方法,在不影响推荐质量的前提下有效提高了推荐效率,从而解决扩展性问题;然后,将其与似然关系模型相结合,使之能够综合利用用户信息、项目信息、用户对项目的评分数据,对不同用户给出不同的推荐策略,从而解决稀疏性问题,提高推荐质量.在MovieLens数据集上的实验结果表明,该算法比单纯使用基于似然关系模型或传统协同过滤技术的推荐算法,不仅推荐质量有所提高,推荐速度比传统协同过滤算法明显加快. Collaborative filtering is one of successful technologies for building recommender systems. Unfortunately, it suffers from sparsity and scalability problems. To address these problems, a collaborative filtering recommendation algorithm combining probabilistic relational models and user grade (PRM-UG-CF) is presented. PRM-UG-CF has primary two parts. First, a user grade function is defined, and user grade based collaborative filtering method is used, which can find neighbors for the target user only in his near grade, and the number of candidate neighbors can be controlled by a parameter, so recommendation efficiency is increased and it solves the scalability problem. Second, in order to use various kinds of information for recommendation, user grade based collaborative filtering method is combined with probabilistic relational models (PRM), thus it can integrate user information, item information and user-item rating data, and use adaptive strategies for different grade users, so recommendation quality is improved and it solves the sparsity problem. The experimental results on MovieLens data set show that the algorithm PRM-UG-CF has higher recommendation quality than a pure PRM-based or a pure collaborative filtering approach, and it also has much higher recommendation efficiency than a pure collaborative filtering approach.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第9期1463-1469,共7页 Journal of Computer Research and Development
基金 国家自然科学基金重大项目(60496321) 国家自然科学基金项目(60573073 60773099) 国家"八六三"高技术研究发展计划基金项目(2006AA10Z245 2006AA10A309) 吉林省科技发展计划基金项目(20030523) 欧盟项目(TH/Asia Link/010(111084))~~
关键词 推荐算法 协同过滤 似然关系模型 用户等级 平均绝对偏差 recommendation algorithm collaborative filtering probabilistic relational model user grade mean absolute error (MAE)
  • 相关文献

参考文献13

  • 1Breese J, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering [C]// Proc of the 14th Conf on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 1998:43-52 被引量:1
  • 2邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:559
  • 3周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 4Meville P, Mooney R J, Nagarajan R. Content boosted collaborative filtering for improved recommendations [C] //Proc of the 18th National Conf on Artificial Intelligence. Menlo Park, CA, USA: AAAI Press, 2002: 187-192 被引量:1
  • 5Li Q, Kim B M. An approach for combining content-based and collaborative filters [C] // Proc of the 6th Int Workshop on Information Retrieval with Asian Language. Morristown. NJ, USA:Association for Computational Linguistics, 2003:17-24 被引量:1
  • 6Mobasher B, Dai H, Luo T, et al. Integrating web usage and content mining for more effective personalization [C] // Proc of the Int Conf on the E-Commerce and Web Technologies. Berlin: Springer, 2000:165-176 被引量:1
  • 7赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991. 被引量:140
  • 8Aggarwal C C. On the effects of dimensionality reduction on high dimensional similarity search [C]// Proc of the 20th ACM SIGMOIYSIGACT-SIGART Symp on Principles of Database Systems. New York:ACM Press, 2001:256-266 被引量:1
  • 9Koller D, Pfeffer A. Probabilistic frame based systems [C] // Proc of the 15th National Conf on Artificial Intelligence. Menlo Park, CA, USA: AAAI Press, 1998:580-587 被引量:1
  • 10Friedman N, Getoor L, Koller D, et al. Learning probabilistic relational models [C]//Proc of the 16th Int Join Conf on Artificial Intelligence. San Francisco: Morgan Kaufmann, 1999: 1300-1309 被引量:1

二级参考文献24

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70. 被引量:1
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186. 被引量:1
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217. 被引量:1
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201. 被引量:1
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295. 被引量:1
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212. 被引量:1
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38. 被引量:1
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997. 被引量:1
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167. 被引量:1

共引文献697

同被引文献276

引证文献20

二级引证文献297

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部