期刊文献+

带干扰两险种风险模型的破产概率 被引量:7

Ruin probability in risk model with two-types of risk by diffusion
下载PDF
导出
摘要 经典破产理论假设保险公司的盈余过程是时齐的独立平稳增量过程.但是,由于保险公司业务种类的日益增多和复杂,经典的破产模型已经不能很好地描述现实过程.随着研究的深入,人们对经典风险模型进行了各种推广,建立了更符合实际的破产模型.假设理赔额到达过程和保单的到达过程为Poisson过程,保单的保费和各险种的理赔额均为随机序列,并考虑到保险公司的投资利率和通货膨胀率,讨论了一类带干扰的两险种风险模型最终破产概率的一般表达式,得到了与经典风险模型相同的破产概率和Lundberg上界. Classical ruin theory assumes that the surplus in an insurance company has stationary and independent increments. However, because of the increasing complexity of insurance and reinsurance products, the classical ruin theory has some limitation in perfect describing the practical process. As the development of research, a more realistic ruin model has been constructed by generalizing the classical ruin theory. In this paper, we assume that the arriving processes of claims and insurance policy are both Poisson process, and that the insurance premiums and all claims are random time-series. Considering the investment yield of insurance company and inflation rate, this article discusses the general equation of ruin probability in risk model with two-types of risk by diffusion, and concludes the same ruin probability and the Lundberg upper bound as those in the classical risk model.
作者 王泓娜
出处 《辽宁师范大学学报(自然科学版)》 CAS 北大核心 2008年第3期275-277,共3页 Journal of Liaoning Normal University:Natural Science Edition
关键词 破产概率 POISSON过程 调节系数 LUNDBERG不等式 ruin probability poisson process adjustment coefficient Lundberg inequality
  • 相关文献

参考文献5

二级参考文献13

  • 1吴岚,杨静平,胡德琨.保险与精算[J].北京大学学报(自然科学版),1997,33(1):123-126. 被引量:11
  • 2Gerber H U 严颖等(译).数学风险论导引[M].北京:世界图书出版发行公司,1997.. 被引量:3
  • 3DICKSON D C M,WAILRS H R.Recursive calculation of survival probabilities[J].ASTIN Bulletin,1991,21:199-221. 被引量:1
  • 4DICKSON D C M.On the distribution of the suplus prior to ruin[J].Insurance Mathematics and Economics,1992,11:191-207. 被引量:1
  • 5GERBER H U.An Introduction to Mathematical Risk Theory[M].Philadelphia:S.S.Heubner Fundation Monograph Series,1979:8. 被引量:1
  • 6成世学.破产论研究综述[R].中国人民大学信息学院保险数学研讨班综述报告,2000,8 被引量:1
  • 7Gerber H.U.数学风险论导引[M].成世学,严颖译.北京:世界图书出版社,1979 被引量:1
  • 8Grandell J. Aspect of Risk Theory[ M]. New York:Spring-Verlag 1991 被引量:1
  • 9Dufresne F,Gerber H. U. Risk Theory for the Compound Poisson Process That Is Perturbed by Diffusion[ J]. Insurance: Mathematics and Economics, 1991,10:51 - 59 被引量:1
  • 10孔繁亮.B值渐近鞅的强弱大数定律[J].数学学报(中文版),1998,41(3):667-672. 被引量:27

共引文献224

同被引文献28

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部