期刊文献+

灰色支持向量机在疲劳裂纹扩展预测中的应用 被引量:1

Fatigue Crack Propagation Forecasting Model Based on Grey Support Vector Machine and Its Application
下载PDF
导出
摘要 针对预测机械设备疲劳裂纹的扩展进程,在分析灰色预测方法和支持向量机各自的优缺点基础上,提出将二者相结合的一种新的预测模型——灰色支持向量机裂纹扩展预测模型.新模型发挥了灰色预测方法中"累加生成"的优点,弱化了原始序列中随机扰动因素的影响,增强了数据的规律性,同时避免了灰色预测方法及模型存在的理论缺陷.工程实例表明,裂纹扩展测模型较传统的GM(1,1)模型、传统支持向量机模型精度都有所提高. Accurately and rapidly forecasting the fatigue crack propagation is of practical significance and remarkable economic benefit. The advantages and disadvantages of grey forecasting methods and support vector machine(SVM) are analyzed respectively, a new fatigue crack propagation forecasting model of grey support vector machine is presented. The new model develops the advantages of accumulation generation in the grey forecasting method, weakens the effect of stochastic disturbing factors in original sequence, strengthens the regularity of data and avoids the theoretical defects existing in the grey forecasting model. The analysis of engineering practice indicates that the entropy weight combined forecasting model can forecast accurately with obvious advantages.
出处 《湖北工业大学学报》 2008年第4期55-58,共4页 Journal of Hubei University of Technology
关键词 灰色预测 支持向量 时间序列 疲劳裂纹扩展 . grey theory support vector machine time sequence fatigue crack propagation
  • 相关文献

参考文献4

二级参考文献25

  • 1夏景明,肖冬荣,夏景虹,贾佳.灰色神经网络模型应用于证券短期预测研究[J].工业技术经济,2004,23(6):109-111. 被引量:9
  • 2邓聚龙.灰色控制系统[M].武汉:华中理工大学出版,1997.. 被引量:59
  • 3Ji Y Q,Integral Eqs Operator Theory,1997年,28卷,28页 被引量:1
  • 4Ji Y Q,Michigan Math J,1997年,44卷,85页 被引量:1
  • 5Jiang C L,Trans Amer Math Sco,1997年,349卷,217页 被引量:1
  • 6Jiang C L,Integral Equations Operator Theory,1996年,24卷,81页 被引量:1
  • 7Jiang C L,OperatorTheory,1996年,36卷,3页 被引量:1
  • 8Vapnik V. Statistical learning theory. New York: Wiley,1998. 被引量:1
  • 9Platt J C. Fast training of SVMs using sequential minimal optimization. In Scholkopf B, Burges C, Smola A (Eds.).Advances in kernel methods: support vector learning.MIT Press, 1998: 185-208. 被引量:1
  • 10Williams C K I, Seeger M. Using the Nystrom method to speed up kemd machines. Advances in Neural Information Processing Systems, 2001, 13: 682-688. 被引量:1

共引文献291

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部