期刊文献+

高斯混合噪声下微弱线谱检测的EM-静态非线性系统方法

Em Nonlinear System Method of Weak Line Spectrum Detection in Gaussian Mixture Distribution Noise
下载PDF
导出
摘要 采用3-水平量化器随机共振对非高斯水下噪声中的线谱信号进行检测,为使该随机共振类型达到最优的检测效果,利用EM算法进行了高斯混合分布的参数估计.通过仿真和实测数据对参数估计方法进行了检验,实验中算法能够正确收敛,拟合性能较好,在此基础上可以得到量化器的最优阈值.随机共振系统处理前后的功率谱对比表明,3-水平量化器随机共振是检测高斯混合分布中微弱线谱的有效手段. The 3 level quantizer stochastic resonance is utilized to detect line spectrum buried in non Gaussian underwater noise. To achieve optimal detection result by the stochastic resonance, EM algorithm is proposed to estimate parameters of the Gaussian mixture distribution. Simulative and real data are all used to test the estimation method. Experiments show that the algorithm has proper convergence and fitting property. Based on the parameters got by EM method, the optimal threshold of quantizer could be calculated. The comparison between the power spectrum of the signals preceded and passed stochastic resonance implies that, the 3 level quantizer stochastic resonance is good for the detection of weak line spectrum buried in Gaussian mixture noise.
出处 《武汉理工大学学报(交通科学与工程版)》 2008年第4期715-718,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国防预研课题项目资助(批准号:4010709010101)
关键词 信号检测 静态非线性系统 高斯混合分布 3-水平量化器 EM算法 signal detection static nonlinear system Gaussian mixture distribution 3 level quantizer EM algorithm
  • 相关文献

参考文献9

  • 1Saha A A. Perturbative corrections to stochastic resonant quantizers [J]. Signal Processing, 2006,86: 3 466-3 471. 被引量:1
  • 2Saha A A, Guha V G. Detectors based on stochastic resonance, Part 2: convergence analysis and perturbative corrections [J]. Signal Processing, 2007, 87(1) :134-147. 被引量:1
  • 3Saha A A, Anand G V. Detectors based on stochastic resonance[J]. Signal Processing, 2003,83: 1 193- 1 212. 被引量:1
  • 4Pflug L A, Ioup G E, Ioup J W. Effects of ambient shipping noise on the single and multiple channel moment detectors for unknown transient signals [R]. MS of USA: USA Navy Research Laboratory Acoustics Division, 1998. 被引量:1
  • 5Richardson A M, Hodgkiss W S. Bispectral analysis of underwater acoustic data[J]. Journal of Acoustic Society of America, 1994,96 : 828-837. 被引量:1
  • 6王平波.主动声呐非高斯信号处理技术研究[D].武汉:海军工程大学电子工程学院,2006. 被引量:1
  • 7王平波,蔡志明,刘旺锁,许江湖.混合高斯自回归模型参数估计方法之LS-EM[J].武汉理工大学学报(交通科学与工程版),2006,30(6):1061-1064. 被引量:4
  • 8李月,杨宝俊..混沌振子检测引论[M],2004.
  • 9王冠宇,陈大军,林建亚,陈行.Duffing振子微弱信号检测方法的统计特性研究[J].电子学报,1998,26(10):38-44. 被引量:54

二级参考文献11

  • 1佘远国,沈成武,黄艳.修正的迭代算法用于结构不确定性问题的静力区间分析[J].武汉理工大学学报(交通科学与工程版),2006,30(2):275-278. 被引量:3
  • 2武宝亨,随机过程与随机微分方程,1993年,153页 被引量:1
  • 3余贻鑫(译),线性系统,1991年,106页 被引量:1
  • 4郭治安(译),高等协同学,1989年,102页 被引量:1
  • 5保铮(译),概率,随机变量与随机过程,1986年,176页 被引量:1
  • 6Zhao Yunxin,Zhuang Xinhua,Ting Shenjen.Gaussian mixture density modeling of non-gaussian source for autoregressive process.IEEE Transactions on Signal Processing,1995,43(4):894-903 被引量:1
  • 7Verbout Shawn M,Ooi James M,Ludwig Jeffrey T,et al.Parameter esitmation for autoreg-ressive gaussian-mixture processes:the EMAX algori-thm.IEEE Transactions on Signal Processing,1998:46(10),2744-2756 被引量:1
  • 8Debasis Sengupta,Steven Kay.Parameter estimation and GLRT detection in colored non-gaussian autoreg-ressive processes.IEEE Transactions on Acoustics,Speech and Signal Processing,1990,38(10):1661-1676 被引量:1
  • 9Aaron A D'Souza.Using EM to estimate a probablity density with a mixture of gaussians.http:// citeseer.ist.psu.edu,2000-1. 被引量:1
  • 10Debasis Sengupta,Steven Kay.Efficient estimation of parameters for non-gaussian autoregressive processes.IEEE Transactions on Acoustics,Speech and Signal Processing,1989,37(6):785-794 被引量:1

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部