摘要
设G为不含K3的2连通的非偶图的图.D(u)={v|v∈V(G),d(u,v)=2},δ0=min{max(d(u),d(v))|u,v∈V(G)且d(u,v)=2},D(δ0)={u|u∈V(G)且d(u)≥δ0},δ*≥δ0,当δ*>δ0时还满足:(i)δ*尽可能的大,(i)对u∈D(δ0)及D*(u)={v|v∈(D(u)U{u}),d(v)<δ*}有|D*(u)|<d(u),则:C(G)≥min{|V(G)|,2δ*+1}.
Let G be the graph of excluding K 3, 2 connected, uneven graph. D(u)={v|v∈V(G),d(u,v)=2},δ 0=min{max(d(u),d(v))|u,v∈V(G) and d(u,v)=2},D(δ 0)={u|u∈V(G) and d(u)≥δ 0},δ *≥δ 0, when δ *>δ 0, it also satisfies: i) δ * sa big as possible; ii) for u∈D(δ 0) and D *(u)={v|v∈(D(u)∪{u},d(v)<δ *} there is |D *(u)|<d(u) then C(G)≥min {|V(G)|,2δ *+1}.
出处
《辽宁大学学报(自然科学版)》
CAS
1997年第4期32-35,共4页
Journal of Liaoning University:Natural Sciences Edition
关键词
不含K3
2连通
周长
图
Exclude K 3, 2 connected, Perimeler, Graph.