摘要
基于广义移动最小二乘法建立了同时考虑挠度和转角双变量的无单元法用于欧拉梁的动力计算.与传统有限元法相比,该方法只需输入节点信息无需定义单元,具有前处理简单的优势;与只考虑挠度的单变量无单元法相比,该方法具有更高的插值精度.运用双变量无单元法计算了4种不同边界条件欧拉梁的自振圆频率和振型,通过与理论解、有限元解、单变量无单元解的比较,表明无单元法在动力分析中的应用是可行的,欧拉梁的计算同时考虑挠度和转角双变量是必要的,该法在高阶振型计算中具有精度优势.
Based on the generalized moving least square method, a new elementfree Galerkin (EFG) double -variable approximation is proposed for dynamic analysis of Euler beam. Compared with finite element method (FEM) , only individual nodal data is required in the current method so that its preprocessor is fairly easy. In contrast to the single - variable approximation which is constructed only using the nodal coefficients of deflection, the present approximation has smaller interpolation error. Natural frequencies and natural modes of four Euler beams with different boundary conditions are calculated by the current method. By comparing with theoretical solution, FEM and single - variable EFG, it is conclude that double -variable EFG is feasible on dynamic analysis and it is necessary to consider both the deflection and rotation nodal variable. This method is more accurate than FEM in higher - order modes calculation of Euler beam.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第4期566-571,577,共7页
Journal of Fuzhou University(Natural Science Edition)
基金
教育部高等学校博士学科点专项科研基金资助项目(20040386004)
福建工程学院科研发展基金资助项目(GY-Z0745)
关键词
无单元法
欧拉梁
动力特性
element- free Galerkin method
Euler beam
dynamic characteristic