期刊文献+

用户多兴趣下基于信任的协同过滤算法研究 被引量:17

Research on Trust based Collaborative Filtering Algorithm for User's Multiple Interests
下载PDF
导出
摘要 协同过滤技术是目前电子商务推荐系统最为有效的信息过滤技术之一.最近的研究尝试在推荐过程中引入信任模型来提高推荐的准确性和抵御"托"攻击.但在用户多兴趣的情况下,属于不同主题的项目需要不同的可信赖人员来推荐,传统的概貌级信任模型已不再适用.本文提出主题级信任计算模型以及基于主题级信任的协同过滤算法.一系列的实验结果表明,该算法在不牺牲鲁棒性的同时,有效地提高了推荐的准确性. Collaborative filtering technique is one of the most effective information filtering techniques in E-commerce recommender systems to date. Recent researches try to incorporate trust model into recommendation process to improve the accuracy and resist shilling attack. However, because of user ts multiple interests, items belonging to different topics need different trustworthy users to make recommendation. Traditional profile level trust model is not suitable. Based on this idea, this paper proposes a topic-level trust model and topic-level trust based Collaborative filtering algorithm. A series of experiments show that the algorithm achieves highly on the accuracy and robustness.
作者 张富国
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第8期1415-1419,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(70663002)资助 江西省教育科学"十一五"规划课题(06YB141)资助 江西省社会科学"十一五"规划项目(06JY13)资助
关键词 电子商务 推荐系统 协同过滤 “托”攻击 信任 e-commerce recommender system collaborative filtering shilling attack trust
  • 相关文献

参考文献15

  • 1Mobasher B, Burke R, Williams C, et al. Analysis and detection of segment-focused attacks against collaborative recommendation[C]. In: Proceedings of the 2005 WebKDD Workshop, 2006. 被引量:1
  • 2Sony admits using fake reviewer [EB/OL]. http://newsvote. bbc. co. uk/2/hi/entertainment/1368666. stm, 2006. 被引量:1
  • 3Stefanie Olsen. Amazon blushes over sex link gaffe[EB/OL]. http://news. com. com/2100-1023-976435. html, 2006. 被引量:1
  • 4Massa P, Avesani P. Trust-aware collaborative filtering for recommender systems[C], In: Proceedings of International Conference on Cooperative Information Systems, Agia Napa, Cyprus: 2004, 492-508. 被引量:1
  • 5Massa P, Bhattacharjee B. Using trust in recommender systems: an experimental analysis[C]. In: Proceedings of Second International Conference on Trust Management, Springer Berlin, 2004, 221-235. 被引量:1
  • 6John O' Donovan, Barry Smyth. Mining trust values from recommendation errors[J]. International Journal on Artificial Intelligence Tools, 2006, 6(15):945-962. 被引量:1
  • 7O' Donovan J, Smyth B. Trust in recommender systems[C]. In: Proceedings of the 10th international conference on Intelligent user interfaces, California, USA: 2005, 167-174. 被引量:1
  • 8Sinha R, Swearingen K. Comparing recommendations made by online systems and friends[C]. In: Proceedings of the DELOS- NSF Workshop on Personalization and Recommender Systems in Digital Libraries, Dublin, Ireland, June, 2001. 被引量:1
  • 9Lam S K, Riedl J. Shilling recommender systems for fun and profit [C]. In: Proceeding of the 13th international conference on World Wide Web, New York, USA: 2004, 393- 402. 被引量:1
  • 10Mobasher B, Burke R, Bhaumik R, et al. Effective attack models for shilling item-based collaborative filtering systems[C]. In: Proceedings of the WebKDD Workshop, 2005. 被引量:1

二级参考文献13

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70. 被引量:1
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186. 被引量:1
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217. 被引量:1
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201. 被引量:1
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295. 被引量:1
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212. 被引量:1
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38. 被引量:1
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997. 被引量:1
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167. 被引量:1

共引文献555

同被引文献127

引证文献17

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部