期刊文献+

基于有监督核局部线性嵌入的面部表情识别 被引量:5

Facial expression recognition based on supervised kernel local linear embedding
下载PDF
导出
摘要 提出了一种新的有监督核局部线性嵌入算法(SKLLE),并将算法应用于面部表情识别中。该算法通过非线性核映射将人脸图像样本投影到高维核空间,然后将人脸图像局部流形的结构信息和样本的类别信息有效地结合进行维数约简,提取低维鉴别流形特征用于表情分类。SKLLE算法不仅能发现嵌入了高维人脸图像空间的低维表情子流形,增强了局部类间的联系,而且对新样本有较好的泛化性。基于JAFFE面部表情库的实验结果表明,该方法能很好地实现维数约简,达到最高识别率(100%)所需的鉴别维数仅为二维,有效地提高了面部表情识别的性能。 A novel supervised kernel local linear embedding (SKI.I.E) method is introduced to facial expression recognition, which maps face images to a high dimensional kernel space through nonlinear kernel mapping, then fuses prior class-label information and nonlinear facial expression submanifold of real face images to extract discriminative features for expression classification. SKLLE can not only gain a perfect approximation of facial expression manifold, and enhance local within-class relations, but also can do well on the new samples. The experimental results on JAFFE database show that the proposed method can achieve the highest recognition rate (100%) using only 2D embedding feature vectors, which improves face expression classification performance effectively.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2008年第8期1471-1477,共7页 Optics and Precision Engineering
基金 重庆市自然科学基金资助项目(No.CSTC2006BB215)
关键词 流形学习 核技巧 局部线性嵌入 有监督学习 面部表情识别 manifold learning kernel trick Local Linear Embedding (LEE) supervised learning facial expression recognition
  • 相关文献

参考文献14

二级参考文献105

共引文献144

同被引文献64

  • 1梁毅雄,龚卫国,潘英俊,李伟红,刘嘉敏,张红梅.基于奇异值分解的人脸识别方法[J].光学精密工程,2004,12(5):543-549. 被引量:40
  • 2宋枫溪,杨静宇,刘树海,张大鹏.基于多类最大散度差的人脸表示方法[J].自动化学报,2006,32(3):378-385. 被引量:17
  • 3刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 4YAN S C, XU D, ZHANG B Y, et al.. Graph embedding and extensions: a general framework for dimensionality reduction [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2007, 29(1):40-51. 被引量:1
  • 5TENENBAUM J B, SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(22):2319-2323. 被引量:1
  • 6ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(22):2323-2326. 被引量:1
  • 7BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6):1373-1396. 被引量:1
  • 8HE X F, YAN S C, HU Y X, et al.. Face recognition using Laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(3):328-340. 被引量:1
  • 9TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1):71-86. 被引量:1
  • 10BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vsFisherfaces: recognition using class specific linear projection [J].. IEEE Transactions on Pattern Analysis and Machine Intelligence.1997, 19(7):711-720. 被引量:1

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部