期刊文献+

基于WPA-SVM的多分类故障混合诊断模型

Multiple classification fault diagnosis hybrid model based on WPA-SVM
下载PDF
导出
摘要 针对目前机械故障诊断中难以进行特征提取和常规SVM算法诊断多类分类问题时存在困难等问题,提出了结合了WPA理论和基于二叉树的多级SVM分类器的WPA-SVM多分类故障混合诊断模型。采用小波包分析对机械信号提取频域能量特征向量,通过训练多个依赖故障优先级的基于二叉树的多级SVM分类器中,找到样本中的支持向量,并以此决定超平面。然后根据最优分类平面,对测试集的样本进行故障诊断。通过对两种不同特征提取方法、三种不同SVM识别策略的实验比较结果可知,该方法是有效的。 Aiming at the difficulty in extracting eigenvectors and the difficulty of traditional SVM algorithm in diagnosis multiclassification,a novel hybrid model for machinery fault diagnosis combining wavelet packet analysis and multiple support vector machine classifier based on binary tree is put forward.According to the method,the energy of different frequency bands after wavelet packet decomposition,as eigenvectors,are input into the multiple support vector machine classifier depend on fault priority to find support vectors and construct hyperplane.And then testing samples are diagnosed according to the hyperplane.Experimental results show that the method proposed above is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第24期242-245,共4页 Computer Engineering and Applications
关键词 小波包 支持向量机 多分类 wavelet packet Support Vector Machine multiple classification
  • 相关文献

参考文献12

  • 1Weston J,Watkins C.Muhi-class Support Vector Machines[D].Royal Holloway College, 1998. 被引量:1
  • 2KreBel U.Pairwise classificatioll and support vector machines[M] Cambridge MA: MIT Press, 1999 : 255-256. 被引量:1
  • 3Motton L,Cortes C.Comparison of classifier methods:a case study in handwriting digit recognition[C]//ICPR94,1994:77-87. 被引量:1
  • 4Hsu C W,Lin C J.A comparison of methods for multi-class support vector machine,2001. 被引量:1
  • 5韩家新,何华灿.SVMDT分类器及其在文本分类中的应用研究[J].计算机应用研究,2004,21(1):23-24. 被引量:15
  • 6何学文,赵海鸣.支持向量机及其在机械故障诊断中的应用[J].中南大学学报(自然科学版),2005,36(1):97-101. 被引量:46
  • 7Hubert D,Stephan W.Detection of cochlear hearing loss applying wavelet packets and support vector machines[C]//Conference Record of the Thirty-Eighth Asilomar Conference on Signals,Systems and Computers, 2004,2:1575-1579. 被引量:1
  • 8Jaime G,Ignacio M,Juan S.Wavelet time shift properties integration with support vector machines[C]//Lecture Notes in Artificial Intelligence:Modeling Decisions for ArtifiCial Intelligence,2004, 3131:49-59. 被引量:1
  • 9Hsu Chih-wei,Lin Chih-jen.A comparison of methods for mufticlass support vector machines[J].IEEE Transactions on Neural Networks, 2002,13(2) :415-425. 被引量:1
  • 10Blanz V,Schuolkopf B,Bulthoii H.Comparison of view-based object recognition algorithms using realistic 3D models[C]//Artificial Neural Networks-ICANN, 1996: 375-381. 被引量:1

二级参考文献16

  • 1耿遵敏,宋孔杰,李兆前,张兴华,万德玉.关于柴油机振声特点及动态诊断方法的研究与讨论[J].内燃机学报,1995,13(2):140-147. 被引量:32
  • 2周晓凯,严普强.用小波分析铁路车辆滚动轴承诊断方法[J].清华大学学报(自然科学版),1996,36(8):29-33. 被引量:17
  • 3马笑潇.智能故障诊断中的机器学习新理论及其应用[D].重庆:重庆大学,2002. 被引量:1
  • 4POYHONEN S, NEGREA M, ARKKIO A. Fault Diagnostics of an Electrical Machine with Multiple Support Vector Classifiers[A]. Proceedings of 2002 IEEE International Symposium on Intelligent Control[C]. Vancouver, 2002. 被引量:1
  • 5GUYON I, WESTON J, BARNHILL S. Gene Selection for Cancer Classification Using Support Vector Machines[J]. Machine Learning, 2002, 46(1-3):389-422. 被引量:1
  • 6GUNN S R. Support Vector Machines for Classification and Regression[R]. Southampton: Department of Electronics and Computer Science, University of Southampton, 1998. 被引量:1
  • 7MA Yong, DING Xiao-qing. Face Detection Based on Cost-sensitive Support Vector Machines[A]. LEE Seong-whan, VERRI A. Pattern Recognition with Support Vector Machines[C]. Niagara Falls, Berlin: Springer Press, 2002: 260-267. 被引量:1
  • 8VAPNIK V. The Nature of Statistical Learning Theory[M]. New York: Spring-Verlag, 1995. 被引量:1
  • 9BURGES J C C. A Tutorial on Support Vector Machine for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167. 被引量:1
  • 10Vapnic 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:2

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部