期刊文献+

超声诊断早期肝硬化人工神经网络模型的评价 被引量:2

Evaluation of ultrasonic diagnosis of earlier period hepatic cirrhosis model on artificial neural network
下载PDF
导出
摘要 目的评价人工神经网络模型在超声诊断早期肝硬化的准确性和可靠性。方法收集临床慢性肝病患者超声影像特征数据为训练样本集,以肝脏组织病理学活检作为金标准,建立超声诊断早期肝硬化人工神经网络模型;同时,将另外收集的慢性肝病患者超声影像特征数据通过神经网络进行仿真运算,得到网络诊断输出,评价该神经网络模型应用于早期肝硬化超声影像诊断的准确性和可靠性。结果以统计学选出的参数作为输入层参数的三层人工神经网络用于超声诊断早期肝硬化的灵敏度和特异度分别为84.1%、84.6%,准确度87.9%,尤登指数0.687。结论人工神经网络模型用于超声诊断早期肝硬化具有较高的准确性,有可能为肝硬化早期诊断提供又一实用有效的手段。 Objective To evaluate the validity and reliability of ultrasonic diagnosis of earlier period hepatic cirrhosis model on artificial neural network(ANN). Methods The ultrasonic features of all the patients with chronic liver diseases were collected for the training database, pathologic biopsy of liver tissue was used as gold standard. The ANN for ultrasonic diagnosis of earlier period hepatic cirrhosis was constructed with a back- propagation training algorithm. Based on the emulational operation by ANN, a network diagnosis was made. The validity and reliability of ANN for earlier period hepatic cirrhosis ultrasonic diagnosis was calculated. Results Three- layer back- propagation network was based on the input variables selected by using statistics analysis, the sensitivity, specificity and accuracy for ultrasonic diagnosis of earlier period hepatic cirrhosis were 84.1%, 84.6% and 87.9%, Youden index was 0. 687. Conclusion It has high accuracy in diagnosis of earlier period hepatic cirrhosis, and it is an efficient means for earlier diagnosis of hepatic cirrhosis.
出处 《临床超声医学杂志》 2008年第8期517-519,共3页 Journal of Clinical Ultrasound in Medicine
基金 陕西省科技计划项目[2006k12-G2(2)]
关键词 人工神经网络 肝硬化 早期 超声检查 Artificial neural network Hepatic cirrhosis,earlier Ultrasounography
  • 相关文献

参考文献15

二级参考文献79

  • 1PingLiu Yun-HuaGao Kai-BinTan ZhengLiu SongZuo.Grey scale enhancement of rabbit liver and kidney by intravenous injection of a new lipid-coated ultrasound contrast agent[J].World Journal of Gastroenterology,2004,10(16):2369-2372. 被引量:3
  • 2栾建安,王纪宪,苏炳华,朱长青.多类别多评估者的kappa分析[J].中国卫生统计,1995,12(6):20-22. 被引量:26
  • 3焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996.. 被引量:51
  • 4[8]Diez FJ, Mira J, Iturralde E, et la. DIAVAL,a Bayesian expert system for echocardiography. Artif Intell Med, 1997;10∶59 被引量:1
  • 5[9]Korver M, Lucas PJ. Cinverting a rule-based expert system into a belief network. MED inform Lond,1993; 18∶219 被引量:1
  • 6[10]Wolfram DA. Amappraisal if Internist-1. Artif Intell Med, 1995;7∶93 被引量:1
  • 7[11]Piraino D,Richmond B,Schluchter M,et al. Radiology image interpretation system:modified observer performance study of an image interpretation expert system. J Digital Image, 1991;4∶94 被引量:1
  • 8[12]Rao AR, Jain R: Knowledge representation and control in computer vision systems. IEEE Expert, 1988;3∶64 被引量:1
  • 9[13]Kofakis P, Orphanoudakis S. Image indexing by context. In: Osteaux M, bakker AR, Bell D, eds. A second generation PACS concept.Berlin:Springler-Verlag,pp.511-513,1992 被引量:1
  • 10[14]Yuji Ukai, Noboru Niki, Hitoshi Satoh,et al. A coronary calcification diagnosis system based on helical CT images. IEEE Transactions on Nuclear Science, 1998;45(6)∶3083 被引量:1

共引文献14137

同被引文献12

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部